

Table	of	Contents
Answers

Table	of	Contents

Copyright

Disclaimer

Introduction	–	SQL	-	Why	you	should	learn	it

SQL	is	widely	used

SQL	can	do	many	things

SQL	skills	are	transferable

Learning	SQL	is	simple

Microsoft	SSMS	–	How	to	get	free	SQL	software

The	big	picture

What	to	download

Where	to	download	it	from

Choosing	between	32-bit	and	64-bit

Completing	the	download

Installing

Northwind	–	How	to	get	a	free	database	to	practice	on

The	big	picture

Download	your	database

Install	your	database

Connect	to	your	database	in	SMSS

Tables	–	What’s	in	a	database

Introduction

Finding	tables

Looking	at	tables

What	tables	are

Rows

Columns

Relationships

Technical	terms

The	next	step

SELECT	–	How	to	query	(get	data	from)	a	database	table

Making	New	Queries

The	Query

The	explanation

Linked	answers

How	to	get	specific	columns

A	note	on	how	this	book	formats	queries

SELECT	-	How	to	do	calculations	within	rows

Introduction

An	example

Keeping	things	organised

A	note	on	units	of	currency

More	math	-	operators

Constants

SELECT	without	FROM

Modulus

Brackets

Text	Strings

String	literals

String	literals	with	AS

Functions

Null

The	IsNull	Function

Other	functions

The	next	step

WHERE	-	How	to	get	the	rows	you	want

Matching	values

Comments

Case

Clauses

Matching	Values	Inexactly

Matching	on	calculations

Matching	text	values	inexactly	with	LIKE

Colour-coding

Date	values	and	literals

Dates	and	times

AND	/	OR	/	NOT	–	How	to	get	the	rows	you	want	more	precisely

AND	-	Ranges

AND	-	Multiple	conditions

OR	–	Being	flexible

Brackets

NOT	–	Saying	what	you	don’t	want

DISTINCT	-	How	to	remove	duplicates

ORDER	BY	-	How	to	sort	your	rows

TOP	-	How	to	take	a	small	sample	of	rows

Bottom

GROUP	BY	-	How	to	summarise	row	data

Sum

Aggregate	functions

Other	Aggregate	Functions

Grouping

Grouping	by	multiple	fields

HAVING	-	How	to	get	the	rows	you	want,	after	summarising

Applying	this	to	other	tables

Multiple	aggregate	functions

Alias	-	How	to	query	with	less	typing

Column	Alias

Table	Alias

INNER	JOIN	-	How	to	combine	related	records	from	different	tables

Other	ways	to	join

Outer	Joins	–	How	to	get	unrelated	records

The	problem	with	inner	joins

What	it	all	means

Left	Outer	Joins

Right	Outer	Joins

Inner	Joins	vs.	Outer	Joins

Full	Outer	Joins

Self-Join	-	How	to	join	a	table	to	itself,	and	why	you	would	want	to

Cross	Join	–	getting	all	possible	combinations	of	table	rows

Introducing	cross	joins

How	cross	joins	work

Uses	of	cross	joins

UNION	/	UNION	ALL	-	How	to	combine	rows	from	two	tables

UNION	ALL

UNION

INTERSECT	–	How	to	get	rows	that	are	only	in	both	tables

EXCEPT	–	How	to	get	rows	that	are	only	in	one	table

Sys	/	Metadata	-	How	to	get	information	about	your	database

Learning	from	existing	views

Subqueries	-	How	to	make	one	query	use	a	result	from	another

Subqueries	in	the	FROM	clause

The	IN	operator

Subqueries	in	the	WHERE	clause	–	using	the	IN	operator

Subqueries	in	the	WHERE	clause	–	the	ALL	operator

Subqueries	in	the	WHERE	clause	-	the	“ANY”	operator

Where	to	go	from	here

Author’s	note

Other	books	you	may	find	useful

	

Learn	SQL	Fast
A	query	writing	course	you	can	read	on	the	train,	based	on	software
you	can	download	for	free

Copyright
Copyright	©	2016	by	D	Armstrong

Disclaimer
While	the	advice	and	information	in	this	book	are	believed	to	be	true	and	accurate	at	the
date	of	publication,	neither	the	author	nor	the	publisher	can	accept	any	legal	responsibility
for	any	errors	or	omissions	that	may	be	made.	The	publisher	and	author	makes	no
warranty,	express	or	implied,	with	respect	to	the	material	contained	herein.

Introduction	–	SQL	-	Why	you	should	learn	it
SQL	is	widely	used
SQL	–	Structured	Query	Language	–	is	a	widely	used	language	for	working	with	data.		All
organizations	have	data,	and	they	typically	store	at	least	some	of	it	in	a	database.

SQL	is	the	language	of	databases:	learning	it	allows	you	to	use	them	effectively.

SQL	can	do	many	things
SQL	allows	you	to	view	data,	analyse	it,	and	perform	calculations	with	it.		With	SQL,	you
can	change	the	data	stored	in	a	database,	or	change	the	way	the	database	itself	works.	
SQL	also	lets	you	make	rules	about	how	data	may	be	changed	and	who	by.

This	book	covers	the	most	common	use	of	SQL:	getting	data	out	of	databases.		It	shows
you	how	you	to	view,	analyse,	and	report	on	data,	which	is	the	first	step	to	becoming	a
confident	SQL	user,	because	it	is	the	skill	that	lets	you	see	what	you	are	working	with.

SQL	skills	are	transferable
There	are	many	database	technologies:	Microsoft	SQL	Server,	MySQL,	Oracle,	Microsoft
Access,	and	so	on.		Each	has	its	own	version	of	SQL.		However,	unlike	programming
languages,	they	are	all	very	similar.

SQL	skills	in	one	technology,	such	Microsoft	SQL	Server,	can	be	quickly	and	easily
applied	to	another,	e.g.	MySQL.		Learning	SQL	once	allows	you	to	use	it	many	times.

Learning	SQL	is	simple
This	book	is	designed	to	make	learning	SQL	as	straightforward	as	possible.		It	is	a
concise,	step-by-step	course,	written	in	plain	English,	with	a	focus	on	using	what	you
learn.		It	gives	examples	of	SQL	(known	as	“queries”)	which	you	can	run	on	your	home
computer,	and	explains	how	they	work.		After	that,	this	book	gives	practice	exercises,	so
that	you	can	try	out	what	you	learn,	before	moving	on.		Later	chapters	show	how	to
combine	the	basics	to	write	more	advanced	queries.

When	a	new	technical	term	is	introduced,	this	course	will	give	a	definition,	or	plain-
English	equivalent,	at	that	point.

The	software	needed	to	practice	SQL	will	run	on	a	home	PC	or	laptop	and	is	freely
available	online.		This	book	will	guide	you	through	downloading	and	installing	the	correct
version	for	your	machine.

Let’s	get	started.

Microsoft	SSMS	–	How	to	get	free	SQL	software
The	big	picture
The	examples	and	exercises	in	this	book	use	Microsoft	technologies,	although	as
mentioned	earlier,	once	you	have	learned	SQL	with	one	technology	it	is	easily	transferable
to	another.		The	book	also	assumes	your	computer	has	Microsoft	Windows	already
installed.

You	will	need	two	pieces	of	software:	SQL	Server	itself	and	SQL	Server	Management
Studio	(SMSS).		Microsoft	provides	both	online	for	free,	as	a	single	package	to	download
and	install.

SQL	Server	is	the	software	that	handles	any	SQL	queries	you	run,	but	it	doesn’t	actually
display	the	results	of	queries,	or	appear	on	screen	at	all.		SMSS	is	the	software	you	will
actually	see:	the	user-interface.		This	is	where	you	type	any	queries	you	want	to	try	out,
and	it	is	what	displays	the	results.

What	to	download
Microsoft	offers	several	different	“editions”	of	SQL	Server	online.		SQL	Server	Express	is
the	free	one,	and	the	one	this	book	is	based	on.

Within	the	Express	edition,	Microsoft	also	offers	several	different	download	“packages”,
e.g.	advanced,	with	tools,	etc.		SQL	Server	Express	with	Advanced	Services	includes
SMSS,	which	you	will	need,	and	is	the	one	this	book	is	based	on.

Where	to	download	it	from
You	can	download	a	free	version	of	the	above	from	Microsoft’s	website,	by	clicking	the
download	link	on	the	web	page	below	(if	you	Google	“download	SQL	Server”,	this	page
should	appear	near	the	top	of	your	results):

https://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-
express.aspx

When	you	click	the	link,	Microsoft’s	site	will	prompt	you	to	sign-in	or	register	for	an
account.		Once	you	have	done	this,	it	will	provide	a	choice	of	SQL	Server	Express
packages	to	download.

If	you	sign	up	for	a	new	Microsoft	account	and	it	doesn’t	take	you	directly	to	the
download	options	afterwards,	go	back	to	the	web	page	above,	click	the	download	link
again,	and	sign	in	with	your	newly	registered	account	details.		You	will	then	be	on	the
correct	page	to	choose	you	download	package.

Choosing	between	32-bit	and	64-bit
You	will	notice	that	the	name	of	the	package	you	need	(SQL	Server	Express	with
Advanced	Services)	appears	twice,	once	for	64-bit	systems	and	again	for	32-bit	systems.	
You	need	to	download	the	one	which	matches	your	system.		To	check	whether	your
system	is	64-bit	or	32-bit,	you	can	use	any	of	the	methods	below.		They	are	listed	in	order:
fastest	first.		If	your	computer	does	not	support	one	method,	you	can	simply	use	the
next	one.

Method	1

Go	to	“search”	on	your	computer.		Type	“system”.		Press	return.		The	system	window	will
appear.		In	the	system	window,	look	down	the	listed	information	to	find	the	system	type.	
This	will	state	if	the	computer	is	64-bit	or	32-bit.		If	you	see	“86”,	e.g.	“x86	based
processor”,	then	this	means	the	processor	is	32-bit.

Method	2

Open	Windows	Explorer,	i.e.	open	any	folder,	such	as	“My	Documents”,	on	your
computer.		In	the	folder	window	which	appears,	on	the	left,	you	should	see	an	option
called	“My	Computer”,	or	“This	PC”,	or	something	very	similar.		Right-click	on	this
option	and	a	menu	will	appear.		Click	the	“Properties”	option	on	this	menu	and	a	new
window	will	appear.		In	this	window,	look	down	the	listed	information	to	find	the	system
type.		This	will	state	if	the	computer	is	64-bit	or	32-bit.		If	you	see	“86”,	e.g.	“x86	based
processor”,	then	this	means	the	processor	is	32-bit.

Method	3

Go	to	“search”	on	your	computer.		Type	“cmd”	and	press	return.		The	“command	prompt”
(a	black	window)	will	appear.		In	the	command	prompt,	type	“systeminfo”,	and	press
return.		This	will	fill	the	command	window	with	more	information	than	fits	on	the	screen.	
Scroll	back	up	to	top	of	the	command	window	and	read	down	until	you	find	a	mention	of
“64-bit”	or	“x64”,	this	will	be	recorded	next	to	“system	type:”	or	similar.		If	you	don’t	see
that,	do	the	same	checks,	but	look	for	“32”	or	“86”	in	place	of	“64”,	i.e.	look	for	“x86”
and	“32-bit”.		If	you	find	any	of	these,	then	your	computer	is	32-bit.

Completing	the	download
Once	you	have	selected	a	package,	click	on	the	“Continue”	button	at	the	bottom	of	the
page.		This	will	take	you	to	a	page	which	starts	the	download.		The	download	is	a	folder,
not	just	one	file.

If	your	browser	gives	you	the	option	to	save	the	download,	save	it	anywhere	you	like,	as
long	as	you	know	where	it	is.		For	example,	save	it	to	your	desktop	for	easy	access	to	the
download.

If	you	don’t	get	the	choice	of	where	to	save,	it	will	almost	certainly	be	downloaded	to	your
computer’s	downloads	folder,	typically	“C:\Users\(your	username	here)\Downloads”.

The	download	may	take	some	time,	but	it	will	continue	by	itself,	so	at	this	point	you	can
leave	the	process	to	finish	itself.

Installing
Open	the	folder	that	you	just	downloaded,	and	you	will	see	a	file	called	“SETUP”.	
Double-click	on	that	file	to	run	it,	and	it	will	take	you	through	the	install	process.		This
will	be	the	usual	process,	i.e.	an	install	wizard.

The	first	window	that	will	open	is	titled	“SQL	Server	Installation	Center	Options”.		This
will	give	two	options:	“New”	and	“Upgrade”.		Click	on	“New”.		This	will	open	a	second
window	“SQL	Server	2014	Setup”.

At	this	point,	you	can	just	keep	clicking	the	“next”	button	until	the	install	process	starts.	
The	wizard	will	ask	you	things	like	whether	you	want	to	install	updates	automatically,	and
which	type	of	Authentication	to	use	for	SQL	Server,	but	none	of	this	is	likely	to	affect
your	use	of	the	software	for	the	purposes	of	this	course.

Like	the	download,	the	install	takes	some	time,	but,	also	like	the	download,	it	will
continue	by	itself,	so	at	this	point	you	can	leave	the	process	and	come	back	to	it	later.

When	the	install	process	is	complete,	go	to	“search”	on	your	computer	and	type	“SMSS”.	
The	results	will	show	you	SQL	Server	Management	Studio.		Click	to	open	it.		It	may	take
a	few	minutes	to	load	up	the	first	time	you	do	this.		When	does	open,	a	dialog	box	(small
window)	will	appear.		Click	the	“Connect”	button	on	this	box.		Your	software	is	now	ready
to	use,	you	just	need	some	data	to	use	it	on.		The	next	chapter	will	cover	that.

Northwind	–	How	to	get	a	free	database	to	practice	on
The	big	picture
You	have	now	set	up	SSMS,	which	allows	you	to	enter	queries	and	see	their	results,	and
SQL	server,	which	actually	runs	those	queries	on	databases.		What	you	need	now	is	a
database	to	run	those	queries	on.		You	also	need	that	database	to	contain	some	test	data	for
those	queries	to	find.

Microsoft	provides	a	free	database	online,	complete	with	data.		This	chapter	will	show	you
how	to	get	that	database	and	set	it	up	for	use	with	SQL	Server.

Download	your	database
The	instructions	below	are	based	on	using	Google	Chrome,	because	it	lets	you	run	the
installer	directly	from	the	browser,	which	simplifies	the	process	a	little.		If	you	are	limited
to,	or	prefer	to	use,	a	browser	which	doesn’t	let	you	do	this,	the	next	section	has
instructions	on	how	to	find	the	installer	file	in	your	Downloads	folder	and	run	it	from
there.

You	can	go	directly	to	the	page	that	instructs	you	on	how	to	download	Northwind	(or
rather,	the	Northwind	installer),	run	the	installer	and	then	connect	the	database	in
SSMS,	at:

https://msdn.microsoft.com/library/8b6y4c7s.aspx

However,	on	Google,	if	you	just	start	typing	“Download	Northwind	…”	it	should	auto-
suggest	“…	for	SQL	server	2014”.		If	you	search	for	that,	it	will,	at	the	time	of	writing,
give	you	the	page	above	in	your	search	results.

The	page	above	contains	a	section	titled	“To	install	the	Northwind	and	Pubs	sample
databases	for	SQL	Server”.		In	that	section,	step	one	has	a	link	to	the	“Northwind	and
Pubs	Sample	Databases	Website”.		This	link	takes	you	to	a	page	with	the	address	below:

https://www.microsoft.com/en-us/download/details.aspx?id=23654

This	is	the	page	you	actually	download	the	database	from.		Ignore	the	fact	that	the
webpage	says	“for	SQL	Server	2000”:	the	Northwind	database	was	created	a	while	ago,
but	newer	versions	of	SQL	Server	can	still	use	it.		The	webpage	has	a	big	red	“Download”
button	on	it.		Once	you	download	the	file,	it	will	appear	as	a	tab	in	the	bottom	left	of	your
browser	(at	least,	if	you	are	using	Chrome).		The	file	name	is	“SQL2000SampleDb.msi”.	
Clicking	on	this	file	will	give	you	the	option	to	run	the	installer	straightaway.

Install	your	database
Preferably,	run	the	installer	from	your	browser	as	described	above.

If	for	any	reason	you	don’t	get,	or	don’t	use,	the	option	to	run	the	installer	from	your
browser	when	you	download	it,	you	can	still	proceed.		Go	to	your	“downloads”	folder.	
Typically	this	will	be	at:	“C:\Users\(your	username	here)\Downloads”.		Double-click	the
installer	file	to	run	it.

Connect	to	your	database	in	SMSS
The	first	of	the	two	web	pages	above	does	include	instructions	for	getting	set	up	with	and
connecting	to	your	database,	but	I	think	the	method	below	is	easier	to	follow,	so	I
recommend	this	way	instead:

Open	SSMS.		From	the	menu	bar	in	the	top	left,	click	on	“File”,	“Open”	and	“File”.		A
window	will	appear	letting	you	browse	through	folders	to	find	the	file	you	need	to	install.	
By	default,	the	database	files	are	automatically	created	in	a	“SQL	Server	2000	Sample
Databases”	folder	on	the	C:	Drive.

You	can	get	to	the	C:	drive	by	clicking	the	“computer”,	or	“my	computer”,	option	on	the
left	of	your	window,	then	double-clicking	on	the	C:	drive	icon.		From	there,	open	the
“SQL	Server	2000	Sample	Databases”	folder.

From	that	folder,	open	the	file	“instnwnd.sql”	(it	may	just	appear	as	“instnwnd”).		This	is	a
file	containing	a	SQL	query	which	will	set	up	the	database	(create	it	and	fill	it	with	data).	
Opening	the	file	will	display	the	text	of	the	query,	brightly	color-coded.

Click	the	red	exclamation	mark	“!”	(called	“execute”)	at	the	top	of	the	SSMS	window.	
This	will	run	the	query	and	make	the	database.		It	may	give	you	a	couple	of	errors
message	about	not	being	able	to	find	stored	procedures.		Ignore	them.

If	you	now	go	to	the	“Object	Explorer”	panel	on	the	left	side	of	SSMS	and	right-click	its
“Databases”	item,	this	will	open	a	menu.		Click	the	“refresh”	option	at	the	bottom	of	that
menu.		Now	click	the	plus	sign	to	the	left	of	“Databases”	to	make	it	expand,	showing	you
the	Northwind	database.		You	are	ready	to	begin!

Tables	–	What’s	in	a	database
Introduction
Before	running	any	queries,	you	need	to	know	what	data	there	is	to	be	queried.		Data	is
stored	in	tables.		This	chapter	will	cover	how	to	find	the	tables	in	your	database,	and	how
to	see	what	they	contain.

Finding	tables
Open	SQL	Server	Management	Studio	on	your	computer.		If	you	can’t	find	it,	then	typing
“sql”	or	“ssms”	in	your	computer’s	search	field	will	bring	it	up	for	you.

If	you	look	in	the	object	explorer,	you	will	see	a	cylinder-shaped	server	icon.		There	will
be	a	green	circle	with	a	white	triangle,	like	a	“play”	button,	on	it,	and	it	will	have	a	small
white	box	to	its	left,	containing	a	minus	sign.		Click	the	box	to	hide	the	items	grouped
under	the	icon	(databases,	security,	etc).		The	box’s	sign	will	also	change	to	a	“plus”.		
Click	it	again	to	make	the	hidden	items	reappear.

Now	click	on	the	sign	next	to	“Databases”	to	make	items	under	that	visible.		Repeat	these
steps	on	“Northwind”	and	then	“Tables”.		This	will	show	you	a	list	of	all	the	tables	in	the
database.

Looking	at	tables
Right-click	on	the	“dbo.Products”	table	and	a	menu	will	appear.		On	the	menu,	click	the
option	for	“Select	Top	1000	Rows”.		This	will	open	a	tab	in	the	main	part	of	your	SSMS
window,	and	the	bottom	half	of	the	tab	will	display	the	contents	of	the	table.		This	table
doesn’t	have	a	thousand	rows,	so	the	tab	just	shows	you	the	rows	it	does	have.		If	the	table
had	more	than	a	thousand	rows,	you	would	see	the	first	thousand.

You	will	see	that	the	table	is	a	list	of	products,	one	product	per	row.		You	will	see	that	each
column	holds	a	specific	piece	of	information	about	each	product:	its	ID	number,	name,
price,	etc.

Use	“Select	Top	1000	Rows”	to	look	at	the	Categories	table	(“dbo.Categories”).		You	will
see	a	list	of	product	categories,	one	per	row,	with	specific	information	about	those
categories	in	each	column.

You	can	have	multiple	open	tabs	at	a	time,	however,	once	they	fill	the	window,	SMSS	will
start	to	move	tabs	into	a	drop-down	menu,	and	they	become	less	convenient	to	work	with.	
Having	two	or	three	tabs	open	at	once	can	be	useful	though.		You	can	use	one	or	two	tabs
as	a	reference,	to	see	what	tables	contain,	and	another	to	write	a	query	on	those	tables.

But	first,	now	that	you	have	some	examples	on	screen,	we’ll	cover	what	database	tables
actually	are.

What	tables	are
Tables	are	where	databases	store	data.		In	Northwind,	for	example,	we	have	tables	of
employees	regions,	products,	and	so	on.		Each	of	these	tables	stores	data	about	a	particular
type	of	person,	place	or	thing.		The	technical	term	for	this	is	“entity”.		Employees	are	one
type	of	entity,	regions	are	another,	and	products	a	third.		Entities	can	also	be	more	abstract,
non-physical	things,	such	as	product	categories.		They	can	be	types	of	events	or	actions,
such	as	customer	orders.		All	of	the	above	would	have	different	data	recorded	about	them,
so	each	of	them	would	need	their	own	table.

Rows
Each	table	row,	or	“record”,	holds	data	about	one	example,	or	“instance”,	of	an	entity.		So
an	employee	would	get	one	row	in	the	Employees	table.		Each	new	employee	would	be	on
a	new	row.		The	number	of	rows	in	a	table	can	be	anything	from	zero	upwards,	and	can
change	over	time	as	the	database	users	add	or	delete	records.

Columns
A	column,	or	“field”,	holds	specific	data	about	one	aspect	of	the	entities	in	its	table.		So
one	column	might	hold	the	first	names	of	the	employees,	the	next	might	hold	the	last
names.		The	number	of	columns	is	fixed,	and	doesn’t	change	unless	the	design	of	the
database	is	changed,	e.g.	by	a	developer.

Relationships
The	records	in	the	Northwind	tables	are	related.		For	example,	a	customer	may	have
several	orders,	so	one	row	in	the	Customers	table	would	be	associated	with	several	rows	in
the	Orders	table.		To	see	another	example,	return	to	the	Products	table	“dbo.Products”.	
The	first	record	in	the	table	is	for	Chai,	and	its	CategoryID	is	1.		If	you	look	in	the
Categories	table,	you	will	see	that	this	CategoryID	number	is	for	beverages.		So,	if	you
didn’t	already,	you	now	know	that	Chai	is	a	beverage.		The	tables	are	related	by	their
CategoryID	fields.		Later	in	the	book,	we’ll	see	how	SQL	can	use	this	feature	to	gather
related	data	from	several	tables	at	once.

Technical	terms
There	are	quite	a	few	technical	terms	to	do	with	data	and	databases.		Whenever	this	book
introduces	a	new	term,	it	will	usually	be	in	quotes,	like	this:

Columns	in	database	tables	are	also	known	as	“fields”.

However,	when	there	is	a	plain	English	equivalent,	the	term	may	simply	be	given	after	it,
in	brackets,	like	this:

Columns	(fields)	store	specific	types	of	data,	e.g.	one	field	may	store	product	names	and
another	may	store	their	prices.

The	next	step
The	next	chapter	will	show	you	how	to	get	data	from	a	table.		After	that,	you’ll	see	how	to
specify	which	fields	you	want	to	view	for	each	record.		Once	you	know	how	to	get	the
data	in	those,	we’ll	move	on	to	doing	things	with	it.

SELECT	–	How	to	query	(get	data	from)	a	database	table
Making	New	Queries
In	the	top	left	of	the	window,	under	the	menu	options	for	“file”,	“edit”,	“view”,	and	the
others,	is	the	“New	Query”	button.		Click	on	that	button.		This	will	make	a	blank	tab
appear.		Also,	the	white	drop-down	box	below	the	“New	Query”	button	should	now	say
“Northwind”.		If	it	doesn’t,	e.g.	if	it	says	“master”,	click	on	it	and	choose	the	Northwind
option	from	the	list.		You	may	have	to	do	this	with	other	new	queries	in	future,	as	it	can
default	back	to	“master”.		If	you	run	a	query	and	get	an	error	message	saying	that	the
things	you	are	querying	can’t	be	found	or	don’t	exist,	this	is	something	worth	checking.

Now,	in	the	blank	tab	you	just	opened,	type	the	text	below	for	your	first	SQL	query.

The	Query
Type:

SELECT	*

FROM	Pzyxroducts

You	don’t	need	to	type	the	“dbo.”	part	of	the	table	name,	as	Microsoft’s	software	defaults
to	that	anyway.		Also,	you	don’t	need	to	use	capitals	in	your	query	if	you	don’t	want	to
(and	it’s	faster	to	type	if	you	don’t).		This	book	uses	capitals	purely	to	make	clear	which
words	are	SQL	keywords,	e.g.	SELECT,	and	which	are	not,	e.g.	Products.		Finally,	it
doesn’t	make	any	difference	how	many	lines	you	spread	your	query	across.		If	you	type
the	query	above	all	on	one	line,	it	works	exactly	the	same.	

Click	the	“Execute”	button	on	the	toolbar	above	your	query	tab,	or	just	press	the	F5	key
on	your	keyboard.		This	will	run	your	query.		You	will	see	the	results	of	your	query	appear
in	the	bottom	half	of	the	tab.

The	explanation
This	query	gets	all	the	rows	and	columns,	and	therefore	all	the	data,	from	the	Products
table.		The	“SELECT”	keyword	tells	the	software	which	columns	to	retrieve.		The	“*”
symbol	(asterisk)	tells	it	to	get	(return)	all	columns.

The	“FROM”	keyword	says	which	table	to	take	data	from.		Followed	by	the	Products
table	name,	it	says	to	take	data	from	Products.		By	default,	SQL	returns	all	rows	from	the
tables	it	queries.		In	later	chapters,	we’ll	explore	ways	to	return	only	the	rows	you	need.

To	summarise,	the	above	query	says	“take	the	data	from	all	columns	of	the	Products
table”.

If	you	just	want	to	see	the	contents	of	a	table,	this	type	of	query	is	useful.		In	fact,	this	type
of	query	is	especially	useful	to	SQL	users,	i.e.	you.		You	can	use	it	to	quickly	see	the
contents	of	a	table	before	taking	the	time	to	write	more	advanced	queries.		Once	you	have
seen	the	structure	and	contents	of	a	table,	it	is	easier	to	query	it	in	more	specific	ways,	as
we	will	do	later.

Exercise	–	1.1

(answer)
Get	all	data	from	the	Categories	table.		Write	and	run	the	query	to	do	this	in	SSMS.

Linked	answers
When	you	have	done	this	exercise,	you	can	click	on	and	follow	the	“(answer	-	1.1)”	link	to
compare	your	query	to	the	one	in	the	answer.		All	the	exercises	have	hyperlinked	answers,
which	you	can	refer	to	if	you	get	stuck	or	want	to	check	that	your	answer	is	correct.

When	you	check	an	answer,	you	can	use	your	e-reader’s	back	button	to	return	to	the	main
part	of	this	course.		However,	just	in	case	you	don’t	have	a	back	button,	or	it’s	broken,	or
you	can’t	use	it	for	some	reason,	each	answer	also	includes	a	link	back	to	its
corresponding	exercise.

How	to	get	specific	columns
Now	replace	the	asterisk	in	your	query	with	the	names	of	two	columns,	i.e.

SELECT	CategoryName,	Description

FROM	Categories

Run	the	query	(Execute	/	F5)	and	see	how	it	only	shows	two	columns.		Note	that,	with
more	than	one	column	in	the	query,	you	have	to	separate	column	names	with	commas.

Exercise	–	1.2

(answer)
For	each	product,	display	its	name,	price	and	the	number	of	units	in	stock.

A	note	on	how	this	book	formats	queries
This	book	puts	each	part	of	a	query	on	a	new	line,	to	make	them	easier	to	understand.		It
also	helps	queries	fit	neatly	onto	the	screen	of	your	e-reader.			However,	as	screen	sizes
and	query	line	lengths	vary,	your	e-reader	may	sometimes	split	one	line	from	the	book
across	several	lines	on	the	screen.		These	split	lines	will	appear	closer	together,	as	below:

This	is	one	very	long	line	of	text	which	is	not	SQL	but	does	show	how	close	together
lines	of	text	appear	if	they	are	separated	automatically	by	an	e-reader	to	make	sure	they
fit	on	a	screen.

On	the	other	hand,	text	which	is	put	on	two	lines	appears	with	a	bigger	gap	in	the	middle,
like	this:

Line	1

Line	2

The	next	chapter	has	some	longer	“SELECT”	statements,	so	you	may	notice	this	effect
there.		This	note	is	included	now	to	prevent	any	confusion	about	the	layout	of	such	queries
later	in	the	book.		Ultimately	however,	SSMS	treats	line-breaks	like	spaces,	which	means
that	when	you	type	in	your	queries,	you	can	format	them	across	however	many	lines
you	like.

SELECT	-	How	to	do	calculations	within	rows
Introduction
This	chapter	covers	common	tasks	in	SQL,	such	as	performing	basic	math	operations	and
handling	fields	without	values	in.		It	demonstrates	these	with	“SELECT”,	as	this	provides
a	way	to	display	the	results	on-screen.		However,	apart	from	the	use	of	“AS”	to	rename
columns	in	query	results,	all	of	the	things	in	this	chapter	can	be	used	in	other	ways.		You
will	see	some	examples	of	this	with	other	SQL	keywords	in	later	chapters.

An	example
Enter	the	query	below:

SELECT	ProductName,	UnitPrice,	UnitsInStock,	UnitPrice	*	UnitsInStock

FROM	Products

When	you	run	this,	you	will	see,	in	the	last	column,	the	total	value	of	the	stock	the
company	holds	for	each	product	type.		Putting	the	“*”	character	between	the	two	fields
(“UnitPrice”	and	“UnitsInStock”)	tells	the	computer	to	multiply,	on	each	row,	the	numbers
they	contain.

Keeping	things	organised
You	will	notice	the	fourth	column	has	no	useful	title.		To	fix	that,	add	“AS	StockValue”,	to
the	query,	as	shown	below.

SELECT	ProductName,	UnitPrice,	UnitsInStock,	UnitPrice	*	UnitsInStock	AS
StockValue

FROM	Products

Run	the	query	now,	and	you	will	see	that	the	title	“StockValue”	has	appeared.		You	can	use
the	“AS”	keyword	to	give	a	title	to	any	column	that	appears	in	your	query	result.

Exercise	–	2.1

(answer)
Change	the	query	above	so	that	“ProductName”	appears	as	“Product”.

A	note	on	units	of	currency
Once	you	become	familiar	with	the	database,	it	will	become	clear	that	it	represents	a	US
company	that	trades	internationally,	which	also	has	a	UK	branch.

Database	fields	containing	currency	values,	such	as	“UnitPrice”,	don’t	include	units.		They
say	“10.00”	rather	than	“$10.00”,	or	“£10.00”,	or	similar.

The	currency	type	isn’t	important	for	this	course.		Currency	values	are	referred	to	in	the
same	way	as	other	numbers,	e.g.	“this	query	lists	products	worth	more	than	3.50	per	unit”,
and	you	can	think	of	them	as	whichever	type	of	currency	you	prefer.

More	math	-	operators
To	do	other	calculations,	simply	swap	the	“*”	for	“/”	to	divide,	“-”	to	subtract,	and	“+”	to
add.		These	characters	are	called	operators,	e.g.	“/”	is	the	division	operator	and	“10	/	2”	is
a	division	operation.

Exercise	–	2.2

(answer)
Get	the	name	and	total	value	of	items	on	order	for	each	product.

You	can	specify	names	for	your	results	columns	if	you	like,	but	from	here	on	the	answers
won’t	include	renaming	unless	the	exercise	specifically	asks	for	it.

Exercise	–	2.3

(answer)
Assume	all	the	products	on	order	have	just	arrived.		Show	how	many	of	each	product	you
now	have.

Constants
Sometimes,	you	may	need	to	use	a	fixed	value,	or	“constant”,	in	your	query	calculations.	
Suppose	Northwind’s	quality	control	department	had	signed	out	three	units	of	each
product	for	testing	and	now	wants	to	return	them.		You	want	to	see	how	many	units	you
will	have	when	they	do.		SQL	can	show	you	this	easily.

SELECT	ProductName,	UnitsInStock	+	3

FROM	Products

You	can	use	decimals	the	same	way.		For	example,	to	calculate	a	20%	sales	tax	on	unit
price,	see	below:

SELECT	ProductName,	UnitPrice	*	0.2

FROM	Products

Exercise	–	2.4

(answer)
Find	a	way	to	show	the	value	of	the	20%	sales	tax	on	each	product,	using	division,	instead
of	by	multiplying.

SELECT	without	FROM
Before	going	any	further,	it	is	worth	noting	that	you	can	also	run	a	query	without	referring
to	any	table	at	all.		You	can	use	“SELECT”	without	“FROM”.		For	example,	try	running:

SELECT	8

You	will	see	a	single	“8”	as	a	result.

The	fact	that	“SELECT”	works	on	its	own	is	useful	to	know,	especially	when	starting	out
with	SQL.		It	provides	a	simple	way	to	try	out	calculations	in	SQL.		For	example,	to
divide	10	by	2,	use:

SELECT	10	/	2

Exercise	–	2.5

(answer)
Find	the	answer	to	“seven	times	eight”.

Modulus
There	is	another	math	operator:	“%”.		This	is	called	the	modulus	operator.		It	works	out
the	remainder	of	a	division.		For	example,	14	%	5	is	4,	because	5	goes	into	14	twice,	with
4	left	over;	whereas	21	%	7	is	0,	because	7	goes	into	21	three	times	exactly,	so	nothing	is
left	over.		Try	this	out	as	below.

SELECT	14	%	5

And:

SELECT	21	%	7

Unlike	the	other	math	operators,	you	may	never	need	to	use	the	modulus	operator.		If	you
do	want	to	practise	working	with	it,	try	the	next	exercise.

Exercise	–	2.6

(answer)
Look	at	the	Products	table	again.		If	you	store	all	units	(currently	in	stock)	for	each
product	in	groups	of	twelve,	show	how	many	units	of	each	product	will	be	left	over.

Brackets
To	do	more	complex	calculations,	you	need	brackets.		To	see	why,	run	the	examples
below.

SELECT	(2	+	2)	*	5

And:

SELECT	2	+	(2	*	5)

The	results	will	be	different:	20	and	12.

In	the	calculations	above,	the	brackets	change	the	order	of	the	operations.		This	changes
the	results.		Calculations	inside	brackets	happen	first,	so	the	first	example	is	2	+	2	=	4
followed	by	4	*	5	=	20,	whereas	the	second	example	is	2	*	5	=	10	followed	by	2	+	10
=	12.

Exercise	–	2.7

(answer)
Get	the	combined	(in	stock	and	on	order)	total	value	of	each	product,	e.g.	if	there	are	10
goods	in	stock,	and	10	on	order,	with	a	unit	price	of	5,	then	your	query	should	return	the
value	as	100.

Text	Strings
The	“+”	sign	has	another	use.		If	you	have	columns	of	text,	rather	than	numbers,	you	use
“+”	to	combine	them.		For	example,	in	the	Customers	table,	you	have	fields	for	address
and	city.		Run	the	query.

SELECT	Address	+	City

FROM	Customers

It	will	show	both	values	for	each	row,	but	in	one	column.

String	literals
The	query	above	will	also	display	the	text	(string)	values	in	each	row	without	any
formatting	characters,	such	as	spaces	or	commas,	between	them.		We	can	fix	this	with	a
string	literal,	i.e.	by	running:

SELECT	Address	+	‘,	‘	+	City

FROM	Customers

The	single	quotes	around	the	comma	and	space	tell	SQL	to	treat	them	as	text,	rather	than
as	a	field	name	or	SQL	keyword.

To	be	technical,	when	you	combine	two	text	strings	in	this	way	(joining	one	to	the	end	of
the	other),	you	“concatenate”	them.		The	“+”	symbol	is	the	concatenation	operator	in	SQL.

Exercise	–	2.8

(answer)
Change	the	query	to	include	the	customer	contact	name	at	the	beginning	of	the	result
column.		Follow	the	same	format.

String	literals	with	AS
Run	the	query	below.

SELECT	‘some	value’	AS	whatever

This	query	works.

Now	run:

SELECT	‘some	value’	AS	some	title

This	query	doesn’t	work.		The	reason	is	that	there	is	a	space	in	the	title	name.		The
computer	reads	the	space	after	“some”	as	marking	the	end	of	the	column	title	and	then
doesn’t	know	what	to	do	with	the	seemingly	random	word	“title”	that	appears	at	the	end	of
the	query.

If	you	want	to	have	a	space	in	your	results	column	title,	you	need	to	work	around	this.	
The	way	to	do	that	is	to	give	the	title	as	a	string	literal,	e.g.

SELECT	‘some	value’	AS	‘some	title’

Now	it	works.

If	you	intend	to	re-use	query	results,	e.g.	as	part	of	a	subquery	(we	cover	this	later),	it’s
better	to	avoid	creating	titles	with	spaces	in.		SQL	can	only	re-use	such	names	if	they	are
wrapped	in	square	brackets,	e.g.	“[some	title]”,	and	this	makes	the	query	less	readable.		A
fairly	readable	alternative	to	spaces	in	multi-word	titles	is	to	capitalise	the	first	letter	of
each	word,	e.g.	“SomeTitle”.

Exercise	–	2.9

(answer)
Add	the	title	“Name	and	Address”	to	the	result	column	of	the	query	in	the	last	exercise.

Functions
A	function	is	something	which	returns	a	value.		To	see	an	example,	run:

SELECT	GetDate()

This	will	return	the	current	date	and	time.		Run	it	again	and	the	value	it	returns	will	change
to	reflect	the	current	time.

In	this	course,	all	function	names	will	be	written	with	a	capital	letter	at	the	beginning	of
each	word.		This	is	to	make	them	more	readable,	and	help	identify	them	as	functions.

The	“GetDate”	function	is	perhaps	a	little	unusual	in	that	you	don’t	give	it	an	input	value.	
Generally,	functions	do	take	input	values	(arguments)	and	return	output	values	based	on
them.		One	commonly-used	function	that	does	this	is	called	“IsNull”.		Before	using	it,
however,	we	need	to	introduce	the	concept	of	“null”.

Null
A	null	value	is	the	computer	equivalent	of	a	blank	space	on	a	paper	form.		It’s	like	a	field
that	hasn’t	been	filled	in	yet,	a	value	which	doesn’t	exist.		Run:

SELECT	*

FROM	Orders

Use	the	scrollbar	in	the	bottom	of	the	results	window	to	look	through	the	columns	until
you	reach	the	“ShipRegion”	field.		Some	of	the	values	in	this	column	are	null.		It	appears
that	some	countries	which	Northwind	ships	goods	to	don’t	use	a	region	as	part	of	the
destination	address.		In	this	case,	it	is	correct	for	the	column	to	have	a	null	value.

Northwind	doesn’t	have	many	null	values,	but	Northwind	is	a	model	database.		That	is,	it
has	been	simplified.		In	real-world	databases,	null	values	tend	to	be	much	more	common.

The	problem	with	null	values	is	that	they	are	not	values.		For	example,	what	is	2	+	null?	
Find	out	with	the	query	below:

SELECT	2	+	null

The	answer	is	null.		Two	more	than	an	unknown	value	is	still	an	unknown	value.		This	is
correct	but	unhelpful.		There	are	many	cases	where	we	will	want	to	replace	null	with
something	more	useful	in	our	results.		For	example,	if	we	wanted	to	combine	our
“ShipRegion”	column	with	another	string,	we	wouldn’t	want	to	include	the	null.		In	these
cases,	we	use	the	IsNull	function.

The	IsNull	Function
Type	the	query	below.

SELECT	OrderID,	ShipCity,	IsNull(ShipRegion,”)	AS	ShipRegion,	ShipCountry

FROM	Orders

The	function	takes	two	arguments,	which	have	to	be	entered	between	its	brackets,	with	a
comma	between	them.		The	first	is	the	name	of	the	field,	in	this	case	“ShipRegion”.		The
function	will	check	if	this	value	is	null.		The	second	argument	can	be	any	value,	in	this
case	we	used	two	single	quotes,	i.e.	a	string	literal	with	no	contents,	known	as	an	empty,
or	zero	length,	string.		Run	the	query	and	you	will	see	that	the	“ShipRegion”	column	now
shows	blank	spaces	where	it	used	to	say	“null”.		For	each	row,	the	function	checks	if	the
first	argument’s	value	is	null.		If	the	value	is	not	null,	the	function	returns	that	value.		If	the
value	is	null,	the	function	returns	the	second	argument’s	value	instead.

To	see	a	really	simple	example,	run:

SELECT	IsNull(null,	0)

And:

SELECT	IsNull(1,	0)

In	the	first	query	the	function	is	given	a	null	value,	and	outputs	the	specified	alternative:
zero.		In	the	second	query,	the	function	is	given	a	non-null	value	“1”,	and	so	outputs	that
value.

Exercise	–	2.10

(answer)
Modify	the	query	of	the	Orders	table	above	so	that	it	returns	two	columns:	OrderID	and
the	other	three	values	formatted	as	part	of	an	address,	i.e.	with	commas	and	spaces
between.		Name	the	address	column	“Order	Address”.

Exercise	–	2.11

(answer)
If	you	run	the	query	in	the	answer	to	Exercise	2.10	above,	you	may	notice	that	when	there
is	no	region	for	a	row,	the	result	shows	two	“comma	plus	space”	separators	together.		This
is	because	the	query	selects	both	string	constants	every	time.		It	is	possible	to	make	the
query	put	this	formatting	only	between	non-blank	fields.		You	can	do	this	by	re-arranging
how	it	selects	text.		See	if	you	can	work	out	how	to	do	this.

Exercise	–	2.12

(answer)
Modify	the	query	in	Exercise	2.11	above	so	that	it	doesn’t	use	the	IsNull	function	around
ShipRegion.		What	does	the	query	return	now?

This	should	show	the	usefulness	of	the	IsNull	function.

Other	functions
There	are	many	other	functions	for	handling	all	kinds	of	data.		There	are	functions	for
getting	parts	of	text	strings,	or	converting	them	between	upper	and	lower	case.		There	are
functions	for	rounding	numbers	up	and	down	and	to	specified	numbers	of	decimal	places.	
There	many	less	well-known	functions	too.		Even	then,	all	of	the	functions	mentioned	so
far	in	this	book	are	only	the	ones	used	to	do	calculations	within	each	row,	the	“in-line”,	or
“scalar”	functions.		There	are	other	types	of	functions	which	will	be	covered	later.		It	is
useful	to	know	how	to	use	functions,	and	do	calculations,	particularly	the	ones	we	have
covered	here.		However,	SQL	isn’t	about	processing	one	list	of	values	into	another	list	of
values.		It	can	do	that,	but	as	this	course	will	show,	SQL	can	do,	and	is	designed	to	do,
a	lot	more.

The	next	step
A	major	strength	of	SQL	is	in	specifying	which	data	to	get.		This	chapter	has	covered
selecting	columns	from	tables,	and	processing	their	values.		The	next	will	cover	selecting
rows.		Do	you	need	a	list	of	only	your	customers	based	in	Germany?		You	need	your	query
to	return	only	certain	rows.		Do	you	want	to	see	which	orders	shipped	yesterday?		That’s	a
set	of	rows	too.		Read	on	to	see	how	to	get	them.

WHERE	-	How	to	get	the	rows	you	want
Matching	values
Did	I	hear	that	you	need	the	records	of	only	your	customers	based	in	Germany?		You	do?	
Then	run	this	query:

SELECT	*

FROM	Customers

WHERE	Country	=	‘Germany’

If	you	use	the	scrollbar	at	the	bottom	of	your	query	results,	you	should	be	able	to	confirm
that	all	the	rows	selected	have	the	word	“Germany”	in	the	country	column.

The	“WHERE”	keyword	is	followed	by	a	condition,	e.g.	“Country	=	‘Germany’”.		The
query	checks	the	condition,	e.g.	compares	the	country	field	to	the	text	string	“Germany”
for	each	row.		If	they	are	equal,	the	comparison	returns	true,	i.e.	confirms	that	the
condition	is	met,	and	the	row	is	included	in	the	query	result.	If	they	are	not	equal,	the
comparison	returns	false,	and	the	row	is	filtered	out	of	the	results.

Exercise	–	3.1

(answer)
Get	a	list	of	customers	in	Berlin.

Exercise	–	3.2

(answer)
Get	only	the	contact	names	and	phone	numbers	of	customers	in	Berlin.

Comments
As	the	course	progresses	to	more	complex	queries,	and	the	exercises	become	more
challenging,	you	may	find	that	some	of	your	queries	don’t	return	the	result	you	expected,
or	maybe	even	return	an	error	message	instead.		If	the	query	is	very	long	and	complex,
you	may	have	trouble	finding	out	where	the	problem	is.

When	this	happens,	there	is	a	simple	way	to	move,	systematically,	towards	writing	the
query	you	need.		It	is	known	as	“commenting	out”.		Here	is	a	(rather	oversimplified)
example	to	show	how	it	works.		Suppose	you	wanted	to	correct	the	query	below:

SELECT	*

FROM	Customers

WHERE	Country	=	‘Germamy’

If	you	run	this	query,	you	get	just	the	column	headers,	but	no	results.

Now	type	two	dashes	“—”	in	front	of	the	last	line	and	run	it	again:

SELECT	*

FROM	Customers

—WHERE	Country	=	‘Germamy’

The	“—”	at	the	beginning	of	the	last	line	marks	it	as	a	comment.		Comments	are	a	way	for
people	designing	queries	to	add	notes	to	them	in	plain	English.		These	notes	are	ignored
by	the	computer	when	it	runs	the	query,	so	the	last	line	is	taken	as	a	comment	and	ignored,
but	the	rest	of	the	query	runs,	and	all	the	rows	from	the	Customers	table	are	returned.

Changing	the	query	like	this	allows	you	to	test	parts	of	a	query	to	see	if	they	work	as
expected.		It	is	much	quicker	than	deleting	lines	and	re-typing	them	later.

In	this	case,	we	can	see	that	the	“SELECT”	and	“FROM”	lines	are	working	correctly,	so
the	problem	must	be	with	the	“WHERE”	line.		Then	we	can	look	at	that	one	line	and	find
issue.

Whilst	the	problem	in	this	line	was	obvious,	the	problem	could	be	more	subtle.		The	line
could	have	read:

WHERE	Country	=	‘	Germany’

The	space	before	the	country	name	could	be	hard	to	spot,	especially	in	a	long	query.

Queries	can	have	any	number	of	lines.		How	many	lines	a	query	contains	can	vary
dramatically	depending	on	the	database.	Several	hundred	lines	is	not	an	unrealistic	amount
to	expect,	especially	if	the	query	uses	unions	(covered	later).		In	such	cases,	you	can	break
down	the	query	into	individual	parts	to	be	tested,	until	you	find	the	part	that	needs	to	be
changed.

Case
When	SQL	Server	matches	text,	it	ignores	the	case	of	the	letters.		If	you	put	“berlin”	in
your	WHERE	clause	instead	of	“Berlin”,	you	will	still	get	the	same	results.

Clauses
SQL	has	certain	keywords	it	uses	again	and	again:	SELECT,	FROM,	WHERE,	and	other
which	are	covered	as	the	course	continues.		These	keywords,	together	with	the	text	that
follows	them,	are	known	as	clauses.		That	is,	you	have	a	SELECT	clause,	a	FROM	clause,
and	so	on.

Let’s	use	these	clauses	to	query	a	different	table.

Exercise	–	3.3

(answer)
Get	a	list	of	the	cities	in	Japan	where	you	have	suppliers.

Exercise	–	3.4

(answer)
Try	just	once	to	get	a	list	of	the	cities	in	India	where	you	have	suppliers,	then	check	the
answer	section.

Matching	Values	Inexactly
Not	all	values	will	be	an	exact	match.		Often,	you	may	want	to	see	all	rows	where	the
values	are	within	a	certain	range.		Suppose	you	want	to	see	a	list	of	products	with	less	than
ten	units	in	stock,	so	you	can	re-order.		Run	this	query:

SELECT	ProductName,	UnitsInStock

FROM	Products

WHERE	UnitsInStock	<	10

There	are	two	things	to	note	about	this	query.		One	is	that	we	replaced	“=”	with	a	“<”,	the
less-than	sign,	to	compare	the	values	differently.		The	other	is	that	the	“10”,	being	a
number,	is	not	enclosed	in	single-quotes.

There	are	other	comparison	operators	we	could	use,	as	follows:

Greater	than:	>

Greater	than	or	equal	to:	>=

Less	than	or	equal	to:	<=

Not	equal	to:	<>

Exercise	–	3.5

(answer)
Change	the	query	above	to	show	products	with	ten	or	more	units	in	stock.

Exercise	–	3.6

(answer)
Now	show	the	names	and	prices	of	all	products	with	a	price	above	21.35.

Matching	on	calculations
When	calculations	were	introduced	earlier,	they	were	used	with	“SELECT”,	but	as
mentioned,	they	don’t	have	to	be.		You	can,	for	example,	use	calculated	values	with
“WHERE”,	for	example:

SELECT	*

FROM	Products

WHERE	UnitsInStock	+	UnitsOnOrder	>	100

This	returns	the	twelve	products	where	the	result	of	the	sum	above	is	greater	than	one-
hundred.

Exercise	–	3.7

(answer)
Show	a	list	of	products	with	current	stock	worth	less	than	one-hundred.

Matching	text	values	inexactly	with	LIKE
You	may	also	need	an	inexact	match	for	a	text	field.		For	example,	if	you	want	to	find	the
types	of	coffee	you	sell	you	could	run:

SELECT	*

FROM	Products

WHERE	ProductName	LIKE	‘%coffee%’

This	gives	you	any	rows	where	the	ProductName	field	contains	the	word	“coffee”,	even	if
there	is	other	text	before	or	after	it.		The	“%”	symbol,	when	used	after	“LIKE”,	in	a	text
string,	will	match	any	combination	of	letters	(including	no	letters	at	all).		It	is	known	as	a
“wildcard”.		You	need	to	use	it	before	and	after	the	word	you	want	to	match,	as	there	may
be	text	in	either	of	those	places.

Exercise	–	3.8

(answer)
Use	a	query	to	show	a	list	of	all	product	names	beginning	with	“P”.

Colour-coding
As	stated	before,	it	doesn’t	matter	to	the	computer	whether	SQL	is	typed	in	capitals	or	not:
it	works	either	way.		In	this	book,	the	SQL	keywords,	like	“WHERE”,	which	form
clauses,	are	written	in	capitals,	to	help	make	clear	what	they	are.		If	you	look	at	your
queries	in	SSMS,	you	may	notice	that	these	words	are	colour-coded	blue.

However,	the	word	“LIKE”	is	grey,	not	blue,	indicating	that	it	is	different.		If	you	look	at
the	“=”	in	your	query,	you	will	see	that	this	symbol	is	grey	too,	indicating	that	it	is
categorised	together	with	“LIKE”.		This	means	that	“LIKE”	is	an	operator.		It	is	a
comparison	operator,	along	with	“=”,	“<>”,	“>”,	etc.		In	this	book,	operators	are	also
shown	in	capitals,	but	their	colour	in	SSMS	identifies	them	as	part	of	another	clause,
rather	than	the	start	of	a	new	one.

Date	values	and	literals
Before	doing	any	more	comparisons,	there	is	another	type	of	data,	or	“data	type”,	that	we
need	to	cover.		We	have	covered	text	strings	and	numbers.		We	will	now	cover	dates.	
Dates	in	SQL	are	formatted	like	strings	and	treated	like	numbers	(although	SQL	uses
special	functions	to	do	calculations	with	them,	rather	than	the	usual	math	operators).		For
example,	if	you	want	to	see	all	of	the	orders	from	February	1998	and	before	(yes,	the
Northwind	sample	database	was	made	a	long	time	ago),	you	can	write	a	query	as	follows:

SELECT	*

FROM	Orders

WHERE	OrderDate	<	‘1998-03-01’

Note	that	although	you	enclose	the	date	in	quotes	as	you	would	with	text,	it	is	still	used	as
a	number	for	the	comparison.		SQL	simply	translates	the	“<”	sign	to	“before”	rather	than
“less-than”	in	this	query.

Also,	although	the	format	is	Year-Month-Day,	or	YYYY-MM-DD,	it	is	possible	that	you
will	come	across	a	database	where	the	dates	are	stored	in	a	different	format,	e.g.	YYYY-
DD-MM.		If	you	are	using,	say	SQL	server,	you	can	check	this	by	looking	inside	the
tables.		However,	in	some	systems,	such	as	Microsoft	Access,	columns	in	tables	can,
confusingly,	be	set	to	display	dates	in	different	formats	to	how	they	are	stored.		This	can
lead	to	some	easily	overlooked	types	of	error.

Exercise	–	3.9

(answer)
List	the	records	of	all	employees	hired	from	1993	onwards.

Dates	and	times
In	Northwind,	the	database	columns	such	as	order	date	store	nine	zeros,	i.e.
“00:00:00.000”,	after	the	end	of	the	dates.		These	are	time	values.		They	are	stored	in	the
format	Hours-Minutes-Seconds-Milliseconds.		In	this	case,	times	are	clearly	not	being
recorded,	and	the	database	is	storing	the	time	part	of	each	date	as	zero.		Effectively,	each
date-time	value	recorded	is	for	the	beginning	of	the	date	specified,	i.e.	midnight.

Some	database	fields	are	set	up	with	dates	only,	but	many	record	times.		This	affects	the
way	they	should	be	queried,	as	described	below.

Time	values	provide	a	good	reason	not	to	use	“=”	with	dates.		Suppose	you	write	a	query’s
“WHERE”	clause	as:

WHERE	SomeDateField	=	‘2016-01-01’

If	your	field	contains	a	time	value	too,	you	will	only	see	records	where	the	time	value	is
exactly	midnight.		You	may	have	a	thousand	records	that	day,	between	9AM	and	5PM,	but
you	will	see	none	of	them	in	your	query	result.

What	you	need	is	a	way	to	see	results	across	the	whole	range	of	times	within	the	day.		The
next	chapter	will	introduce	some	SQL	keywords	which	will	allow	you	to	do	just	that,	and
more	besides.

AND	/	OR	/	NOT	–	How	to	get	the	rows	you	want	more
precisely
AND	-	Ranges
So	far,	all	of	the	queries	have	selected	rows	according	to	whether	they	met	one	condition.	
This	chapter	will	show	you	how	to	combine	multiple	conditions	to	focus	your	query	on	the
rows	you	need.		In	doing	so,	it	will	also	provide	a	way	to	deal	with	dates.

In	the	last	chapter,	in	became	clear	that	we	couldn’t	reliably	select	dates	using	the	“=”
operator.		Any	date	with	a	non-zero	time-value	will	never	match	a	date	in	the	format:
“YYYY-MM-DD”,	as	its	value	will	always	be	between	two	such	dates.

What	we	need,	then,	is	a	“BETWEEN”	operator.

SELECT	*

FROM	Orders

WHERE	OrderDate	BETWEEN	‘1997-01-01’	AND	‘1997-01-02’

Run	this	query.		You	get	a	list	of	orders	in-between	the	two	dates,	but	you	also	get	a	record
with	an	order	on	the	query’s	second	date.		This	is	because	the	“BETWEEN”	operator	is
“inclusive”	of	the	two	date	values.

However,	in	some	versions	of	SQL,	“BETWEEN”	may	not	include	the	dates.		It	may	be
“exclusive”	and	therefore,	in	this	case,	with	our	time-free	date	fields,	it	may	return	no
records	at	all.

Ideally,	we	want	a	query	that	will	work	as	we	expect,	in	any	version	of	SQL,	whether	or
not	the	date-time	field	contains	time	values.		In	this	case,	we	want	a	result	that	includes	all
the	records	we	got	in	the	last	query,	except	those	with	an	order	date	of	exactly	‘1997-01-
02’.		Try	the	query	below:

SELECT	*

FROM	Orders

WHERE	OrderDate	>=	‘1997-01-01’

AND	OrderDate	<	‘1997-01-02’

This	gives	us	only	the	records	on	or	after	midnight	of	the	first	day,	and	before,	but	not	on,
midnight	of	the	next.		It	is	also	very	clear,	from	reading	the	query,	how	it	works.

This	query	uses	the	“AND”	operator	to	extend	the	“WHERE”	clause	(the	SSMS	colour-
coding	explained	earlier	should	make	this	easier	to	see).		Each	date	comparison	for	each
row	now	returns	a	value	of	true	or	false,	this	time	to	the	“AND”,	which	only	returns	true
to	the	“WHERE”	clause	as	a	whole	if	it	gets	two	true	inputs,	i.e.	condition	1	is	true	AND
condition	2	is	true.

Operators	like	“AND”,	which	process	values	of	true/false,	are	known	as	logical,	or
Boolean,	operators,	as	opposed	to,	for	example,	the	math,	or	arithmetic	operators,	like	“-”

and	“/”.

The	use	of	“AND”	here	allows	you	to	get	values	in	a	date	range.		However,	its	use	isn’t
limited	to	working	with	dates.		It	can	be	used	with	any	combination	of	conditions.

Exercise	–	4.1

(answer)
Get	a	list	of	products	with	at	least	ten	but	less	than	twenty	units	in	stock.		Show	the	stock
levels	in	your	results.

Filtering	results	on	a	range	is	just	one	use	for	“AND”.		You	can	also	use	it	to	filter	results
on	separate	fields,	as	in	the	next	exercises.

AND	-	Multiple	conditions
Exercise	–	4.2

(answer)
Get	the	records	for	orders	shipped	to	Brazil	from	1997	onwards.

Exercise	–	4.3

(answer)
Get	the	orders	shipped	to	Brazil	in	1997	(you	can	use	“AND”	as	many	times	as	you	like,
just	keep	adding	the	operator	followed	by	its	condition	to	the	end	of	your	“WHERE”
clause).

OR	–	Being	flexible
What	if	you	want	to	get	results	that	meet	either	of	two	conditions?		For	example,	you	may
want	a	list	of	orders	shipped	to	the	US	and	Canada.		You	can’t	use	the	“AND”	operator	for
this:	it	will	only	return	orders	that	went	to	both	countries,	i.e.	no	orders.		You	need	an
“OR”	operator.

SELECT	*

FROM	Orders

WHERE	ShipCountry	=	‘USA’

OR	ShipCountry	=	‘Canada’

The	“OR”	takes	the	results	of	the	two	comparisons	and,	if	either	one	is	true,	returns	a
result	of	true.		The	row	is	then	included	in	the	results.

Let’s	apply	this	to	another	table.

Exercise	–	4.4

(answer)
The	UK	sales	team	are	visiting	the	Seattle	office:	list	the	records	of	any	employees	you
would	now	expect	to	be	in	Seattle.

Brackets
If	you	think	back	to	the	chapter	on	“SELECT”	and	math,	when	brackets	were	introduced,
you	may	remember	that	operations	inside	brackets	happen	before	those	outside	of	brackets

Try	the	following	query:

SELECT	*

FROM	Customers

WHERE	ContactTitle	=	‘Owner’

AND	(Country	=	‘USA’

OR	Country	=	‘Mexico’)

This	query	returns	a	list	of	customers	where	your	contact	is	the	business	owner	and	which
are	based	in	Mexico	or	the	US.		The	query	compares	the	country	field	first,	and	if	either	of
the	comparisons	is	true,	it	also	checks	the	“ContactTitle”.		If	this	is	“Owner”	then	it
includes	the	row	in	the	result	set.

Now	run	the	query	below.

SELECT	*

FROM	Customers

WHERE	(ContactTitle	=	‘Owner’

AND	Country	=	‘USA’)

OR	Country	=	‘Mexico’

This	gives	a	different	result.		This	time	you	still	get	all	the	US	customers	where	your
contact	is	the	owner,	but	your	get	all	the	Mexican	customers	regardless	of	what	is	in	their
“ContactTitle”	field.		This	is	because	the	“AND”	operation	between	the	top	two
comparisons	now	happens	first.

All	that	has	changed	in	the	above	query	is	the	position	of	the	brackets,	but	this	affects
what	you	are	asking	the	query	to	do,	which	changes	the	result.

The	next	few	exercises	are	about	putting	together	a	similar	query,	one	step	at	a	time.

Exercise	–	4.5

(answer)
Get	a	list	of	customers	outside	the	US	(the	“not	equal	to”	operator	is	“<>”).

Exercise	–	4.6

(answer)
Get	a	list	of	customers	where	your	contact	has	a	title	beginning	with	“Sales”	or
“Marketing”.

Exercise	–	4.7

(answer)
Combine	the	two	queries	above	-	get	a	list	of	the	names	and	phone	numbers	of	your	non-
US	contacts	with	those	“Sales”	and	“Marketing”	titles.		Include	their	titles	and	countries	in
the	results	too,	so	you	can	check	easily	whether	the	query	is	working	correctly	or	not.

NOT	–	Saying	what	you	don’t	want
Suppose	you	have	worked	through	your	list	of	US	and	Mexico-based	owners.		Now	you
want	a	list	of	your	other	US	and	Mexico-based	contacts.		You	could	use	the	query	below.

SELECT	*

FROM	Customers

WHERE	ContactTitle	<>	‘Owner’

AND	(Country	=	‘USA’

OR	Country	=	‘Mexico’)

You	could	also	use	this:

SELECT	*

FROM	Customers

WHERE	NOT	ContactTitle	=	‘Owner’

AND	(Country	=	‘USA’

OR	Country	=	‘Mexico’)

There	is	no	difference.		The	“NOT”	operator	returns	the	opposite	of	a	comparison	result:
true	for	false	and	false	for	true.		Using	it	above	with	“=”	is	the	same	as	using	“<>”.

However,	the	advantage	of	the	“NOT”	operator	is	that	it	can	be	applied	to	multiple
comparisons	at	once,	i.e.	to	those	in	brackets.		For	example:

SELECT	*

FROM	Customers

WHERE	ContactTitle	=	‘Owner’

AND	NOT	(Country	=	‘USA’

OR	Country	=	‘Mexico’)

This	query	retrieves	the	records	for	owners	based	outside	the	US	and	Mexico.

Exercise	–	4.8

(answer)
Get	a	list	of	the	names	and	numbers	of	your	non-US	contacts	whose	titles	don’t	begin	with
“Sales”	or	“Marketing”.

Exercise	–	4.9

(answer)
Get	a	list	of	the	names	and	numbers	of	your	contacts	outside	of	the	US	and	Mexico,	whose
titles	don’t	begin	with	“Sales”	or	“Marketing”.

	

	

DISTINCT	-	How	to	remove	duplicates
Run	the	query:

SELECT	DISTINCT	Title

FROM	Employees

The	“DISTINCT”	keyword	makes	a	query	remove	duplicate	values.		In	the	example,	you
may	have	several	employees	with	the	same	job	title,	but	this	query	will	return	each	title
only	once.		It	gives	you	a	list	of	the	job	titles	that	exist	in	the	company.

Exercise	–	5.1

(answer)
List	the	countries	in	which	your	suppliers	are	based.

ORDER	BY	-	How	to	sort	your	rows
If	you	run	a	query	like	this:

SELECT	*

FROM	Products

You	will	get	the	records	in	the	order	they	are	stored,	i.e.	those	with	lower	ProductID
values	will	be	nearer	the	top	of	the	results.		However,	you	may	want	them	ordered
differently.

If	you	want	to	easily	compare	how	many	of	each	item	you	have	in	stock,	you	could	sort
your	query	according	to	the	values	in	the	field	“UnitsInStock”,	as	below.

SELECT	*

FROM	Products

ORDER	BY	UnitsInStock

This	gives	you	a	list	with	the	least-stocked	items	at	the	top.		However,	it	would	probably
be	more	useful	to	have	the	most-stocked	items	at	the	top,	as	these	are	likely	to	be	more
important	to	the	company.		Change	the	query	to:

SELECT	*

FROM	Products

ORDER	BY	UnitsInStock	DESC

This	will	sort	the	rows	in	descending	order	of	the	“UnitsInStock”	values.		The	default
order	is	ascending,	so	this	query	gives	you	the	reverse	order	of	the	one	above.

Next,	get	the	top	thousand	rows	of	the	table	(as	you	did	near	the	start	of	this	book)	and
notice	how,	towards	the	bottom,	the	supplier	IDs	are	not	grouped	together.		Suppose	you
want	to	see	products	from	each	supplier	together.		Run	this	query:

SELECT	*

FROM	Products

ORDER	BY	SupplierID

Notice	how	rows	with	the	same	supplier	ID	are	now	always	next	to	each	other.

If	you	want	to	order	your	query	results	by	more	than	one	field,	you	can	use	commas,
i.e.	run:

SELECT	*

FROM	Products

ORDER	BY	SupplierID,	UnitsInStock	DESC

Notice	how	this	query	sorts	rows	by	the	leftmost	field,	“SupplierID”,	first,	so	that	records
with	the	same	Supplier	ID	form	blocks	of	records,	and	then	sorts	rows	within	each	block

by	their	“UnitsInStock”	value.		Also	note	that	the	“DESC”	keyword	has	been	applied	to
the	ordering	of	“UnitsInStock”	only,	i.e.	it	has	been	applied	only	to	the	field	it	follows,	not
the	whole	“ORDER	BY”	clause.		The	“SupplierID”	column	is	still	sorted	in	ascending
order.

Exercise	–	6.1

(answer)
Group	the	products	by	category,	then	in	ascending	order	of	price	per	unit.		Show	the
product	name,	category	ID	and	unit	price	in	your	results.

TOP	-	How	to	take	a	small	sample	of	rows
At	the	start	of	this	book,	you	found	the	Products	table,	and	selected	the	top	thousand
rows.		This	is	a	useful	built-in	option	in	SQL	Server	Management	Studio.		However,	the
SQL	to	do	the	same	thing	is	very	simple,	and	worth	knowing,	since	you	may	not	always
be	using	SSMS	and	its	built-in	options.		Run	the	query	below:

SELECT	TOP	1000	*

FROM	Products

This	will	return	the	first	thousand	rows	selected	from	the	Products	table.		If	there	are	fewer
than	one-thousand	rows,	it	will	return	the	rows	that	are	there.		If	you	don’t	want	a
thousand	rows,	just	change	the	“1000”	to	the	number	of	rows	you	do	want.

One	advantage	of	using	“TOP”	to	select	a	small	number	of	rows	is	that	selecting	more
rows	takes	more	time.		The	computer	takes	time	to	load	them	all.		Why	wait?

It	is	worth	knowing	that	“TOP”	gets	you	the	first	rows	selected,	rather	than	the	first
thousand	rows	stored	in	the	table.		It	allows	you,	should	you	wish,	to	run	queries	like	this:

SELECT	TOP	10	*

FROM	Products

ORDER	BY	ProductName

You	can	then	view	a	different	sample	of	records,	in	this	case	the	top	ten	products,	ordered
alphabetically	by	name.		The	rows	are	put	in	order	before	the	top	ten	are	taken.

Exercise	–	7.1

(answer)
List	the	names	and	prices	of	the	ten	cheapest	products.

Bottom
As	there	is	a	“TOP”,	you	might	expect	there	to	be	a	“BOTTOM”.		SQL	Server	doesn’t
have	this,	but	you	can	often	still	get	the	last	rows	of	a	table.		The	Products	table	has	a
ProductID	field,	containing	an	ID	number	which	increases,	by	a	value	of	one,	for	each
new	record	added,	to	ensure	the	ID	field	is	unique	for	each	record.		Knowing	this,	to	get
the	bottom	ten	rows,	you	can	use:

SELECT	TOP	10	*

FROM	Products

ORDER	BY	ProductID	DESC

This	will	sort	the	data	in	the	reverse	order	to	how	it	is	stored.		Effectively,	this	makes	an
upside-down	version	of	the	table,	and	returns	the	top	ten	rows,	which	were	at	the	bottom
of	the	original	table,	from	that.

GROUP	BY	-	How	to	summarise	row	data
We	have	already	covered	how	to	do	calculations	within	a	single	record.		You	could	now,
for	example,	calculate	the	stock	value	held	for	each	type	of	product	by	running:

SELECT	UnitsInStock	*	UnitPrice	AS	ValueInStock

FROM	Products

However,	if	you	want	to	know	the	total	value	of	stock	in	the	warehouse,	this	query	still
leaves	you	with	a	lot	of	adding	up	to	do.		What	you	need	is	a	way	to	do	calculations	using
whole	columns	as	input.		Let’s	look	at	how	to	do	that.

Sum
Run	the	following	query.

SELECT	Sum(UnitsInStock)

FROM	Products

The	“Sum”	function	adds	all	the	values	in	the	named	column	and	gives	a	total.

To	get	the	total	value	of	the	stock	held,	run	the	query:

SELECT	Sum(UnitsInStock	*	UnitPrice)

FROM	Products

Operations	inside	function	brackets	are	no	different	from	operations	inside	any	other
brackets,	in	that	they	are	completed	first.		Here,	this	means	that,	for	each	row,	the	values	in
the	two	fields	are	multiplied,	and	all	of	the	results	are	then	added	together	by	the	“Sum”
function.

Aggregate	functions
The	“Sum”	function	is	known	as	an	aggregate	function,	because	it	brings	together
(aggregates)	all	of	the	input	field’s	values	into	one	value,	whereas	functions	like	“IsNull”
are	in-line,	or	“scalar”	functions,	because	they	work	within	rows,	rather	than	across	them.	
There	are	other	aggregate	functions	than	“Sum”,	such	as	the	one	in	the	query	below:

SELECT	Count(*)

FROM	Products

This	simply	returns	the	number	of	records	in	the	Products	table.

To	get	the	highest	(maximum)	value	in	a	column,	you	can	use	a	query	such	as:

SELECT	Max(UnitPrice)

FROM	Products

To	get	the	lowest	(minimum)	value,	use:

SELECT	Min(UnitPrice)

FROM	Products

Of	course,	the	query	above	doesn’t	tell	you	what	the	lowest-priced	product	actually	is.		To
get	the	product	name	as	well	as	the	lowest	price,	we	could	use	a	subquery.		We’ll	cover
subqueries	later;	they	have	their	own	chapter.

You	can	make	your	query	filter	records,	before	aggregating	them.		This	allows	you	to
work	with	parts	of	a	table,	such	as	the	records	of	products	in	a	particular	category,	or	of
product	types	which	you	currently	have	in	stock.

The	query	below	does	the	latter:

SELECT	Count(*)

FROM	Products

WHERE	UnitsInStock	>	0

The	“WHERE”	clause	is	applied	to	the	query	before	the	results	are	counted.

Exercise	–	8.1

(answer)
Find	the	total	number	of	units	you	have	in	stock	for	discontinued	products	(these	have	a
“1”,	meaning	“true”,	in	their	“Discontinued”	field).

Exercise	–	8.2

(answer)
Find	the	total	number	of	units	you	have	in	stock	for	products	in	beverages	(CategoryID
=	1).

Other	Aggregate	Functions
There	are	other	aggregate	functions	in	SQL.		For	example,	“Avg”	calculates	the	average
value	of	a	group	of	results	from	a	number	column.		However,	they	are	all	used	in	the	same
way	within	queries,	so	rather	than	just	cover	more	aggregate	functions,	this	course	will
now	focus	on	more	advanced	ways	of	using	aggregation.

Grouping
The	last	exercise	returned	one	figure	for	one	category.		However,	if	you	wanted	to	see	the
totals	for	every	category,	you	would	not	want	to	have	to	run	a	query	once	for	each	of
them.		This	is	where	grouping	is	useful.		Run	the	query	below.

SELECT	CategoryID,	Sum(UnitsInStock)	AS	UnitsInStock

FROM	Products

GROUP	BY	CategoryID

The	“GROUP	BY”	clause	tells	the	query	to	apply	the	aggregate	function,	in	this	case
“Sum”,	to	rows	with	the	same	values	in	their	category	fields,	so	the	query	returns	a	result
for	each	category.

To	return	fields	in	a	query	with	grouping,	those	fields	must	have	only	one	possible	value
for	each	group.		In	this	case,	the	“CategoryID”	field	has	only	one	possible	value	per	row,
because	it’s	in	the	“GROUP	BY”	clause.		That	tells	the	query	to	put	each	category	ID	in
its	own	group.		The	“Sum”	field	has	one	value	per	group,	which	it	gets	by	adding	up	all
the	“UnitsInStock”	values	in	the	category.

However,	if	we	wanted	to	include	“ProductName”	in	the	“SELECT”	clause	of	this	query
we	couldn’t	do	it,	because	there	are	many	product	names	for	each	category.		With	many
possible	values,	the	query	cannot	return	any	of	them.

Exercise	–	8.3

(answer)
Get	the	number	of	units	on	order	from	each	supplier.		Show	the	supplier	IDs	in	your
results.

Using	ID	fields	limits	the	usefulness	of	the	results	to	anyone	wishing	to	read	them.	
However,	you	can	get	the	names	associated	with	those	IDs	in	your	results.		We’ll	cover
how	to	do	that	in	the	chapter	on	inner	joins.

Exercise	–	8.4

(answer)
Get	the	total	value	of	those	units,	for	each	supplier.

Exercise	–	8.5

(answer)
Get	the	price	of	the	most	expensive	item	in	each	category.

Exercise	–	8.6

(answer)
Get	the	price	of	the	cheapest	item	from	each	supplier.

Grouping	by	multiple	fields
It	is	also	possible	to	group	by	more	than	one	field,	as	below.

SELECT	SupplierID,	CategoryID,	Count(*)	AS	ProductCount

FROM	Products

GROUP	BY	SupplierID,	CategoryID

ORDER	BY	SupplierID,	CategoryID

This	query	shows	how	many	products	each	supplier	provides	in	each	category.

HAVING	-	How	to	get	the	rows	you	want,	after	summarising
Suppose	we	want	a	list	of	categories	that	contain	less	than	ten	products.		To	see	how	many
items	each	category	contains,	we	could	do	this:

SELECT	CategoryID,	Count(*)

FROM	Products

GROUP	BY	CategoryID

At	this	point,	it	looks	like	the	results	could	be	filtered	by	applying	a	“WHERE”	clause	to
the	“Count(*)”	field.		However,	the	“WHERE”	clause	is	applied	to	the	fields	of	the	table
in	the	“FROM”	clause	before	the	rows	are	counted.		It	can’t	filter	by	a	count	that	doesn’t
exist	yet.

To	filter	by	aggregate	values,	such	as	those	in	“Count(*)”	above,	you	can	use	“HAVING”.	
It	works	like	“WHERE”,	but	for	aggregated	values.		Run	the	query	below.

SELECT	CategoryID,	Count(*)

FROM	Products

GROUP	BY	CategoryID

HAVING	Count(*)	<	10

Now	you	should	see	the	results	you	need.

The	count	is	included	in	the	“SELECT”	clause	above	because	it	helps	confirm	that	the
results	are	correct.		However,	if	you	wanted	just	the	list	of	categories,	you	could	leave	out
that	part	of	the	query,	as	below.

SELECT	CategoryID

FROM	Products

GROUP	BY	CategoryID

HAVING	Count(*)	<	10

The	“SELECT”	clause	specifies	data	to	display.		The	“HAVING”	clause	specifies	criteria
for	excluding	data.		You	don’t	have	to	display	data	in	your	results	in	order	to	filter	them	by
it:	you	only	need	the	aggregate	calculation	in	the	“HAVING”	clause.		For	the	exercises
below,	however,	you	may	wish	to	include	the	aggregate	columns	in	the	results	you	display,
so	you	can	more	easily	see	whether	your	queries	work	as	intended.

Exercise	–	9.1

(answer)
List	the	IDs	of	categories	with	more	than	100	units	in	stock.

Exercise	–	9.2

(answer)

List	the	IDs	of	suppliers	which	have	only	one	product.

Exercise	–	9.3

(answer)
List	the	categories	which	don’t	have	units	on	order.

Applying	this	to	other	tables
Take	a	look	at	the	“Orders”	table	to	see	what	data	is	specific	to	each	order:	it	has	one	row
per	order,	and	therefore,	a	unique	order	ID	for	each	row.		Now	take	a	look	at	the	“Order
Details”	table	to	see	data	specific	to	each	product	in	each	order,	it	has	one	row	per	product
per	order.		In	one	order,	there	can	be	many	products,	so	in	the	“Order	Details”	table,	there
can	be	many	rows	with	the	same	order	ID.		This	is	known	as	a	one-to-many	relationship
between	the	tables,	or	rather,	the	records	in	them.

Grouping	and	aggregation	are	useful	for	dealing	with	data	organised	this	way.		To
complete	the	following	exercises,	group	and	aggregate	the	data	in	the	Order	Details	table.

Note	that	when	referring	to	the	table,	you	will	need	to	use	the	format:

FROM	[Order	Details]

The	square	brackets	“[]”	tell	SQL	that	the	text	within	them	is	all	one	name,	despite	the
space	in	the	middle.

Exercise	–	9.4

(answer)
List	the	orders	(by	ID)	containing	less	than	fifty	units.

Exercise	–	9.5

(answer)
Get	a	list	of	orders	in	which	any	of	the	products	have	been	discounted	by	more	than	20%
(0.2).		Show	one	of	these	higher-than-20%	discounts	for	each	order.

Multiple	aggregate	functions
You	can	use	more	than	one	aggregate	function	at	a	time,	e.g.

SELECT	OrderID,	Count(*),	Sum(Quantity)

FROM	[Order	Details]

GROUP	BY	OrderID

This	(slightly	contrived)	example	tells	you	both	the	total	number	of	products	and	the	total
number	of	units,	in	each	order.

Exercise	–	9.6

(answer)
Get	a	list	of	orders,	their	cash	values	(before	any	discount)	and	the	number	of	units	they
contain.		Add	your	own	column	titles	to	the	query	result.

Alias	-	How	to	query	with	less	typing
Column	Alias
An	alias	is	an	alternative	name,	of	your	choice,	for	a	table	or	column.		You	have	already
used	aliases	several	times	to	rename	the	column	headings	as	they	appeared	in	your	query
results,	e.g.

SELECT	ContactName	AS	Contact

FROM	Customers

You	don’t	have	to	use	the	“AS”	keyword	at	all.		Remove	the	“AS”	and	run	the	query
again.

SELECT	ContactName	Contact

FROM	Customers

This	gives	exactly	the	same	result.		However,	the	query	with	“AS”	in	it	is	clearer	to	read.	
The	extra	word	makes	the	fact	that	you	are	using	an	alias	much	more	obvious.

Table	Alias
In	the	coming	chapters	covering	joins,	we	will	run	queries	on	multiple	tables	at	once.		This
creates	a	problem	for	SQL	in	that,	if	two	tables	have	the	same	field	name,	and	you	ask
your	query	to	give	you	that	field,	SQL	doesn’t	know	which	table	you	want	to	take	the	field
from.		If	you	ever	try	to	run	a	query	where	this	is	an	issue,	you	will	get	an	error	message
telling	you	that	the	field	name	you	requested	is	“ambiguous”.		SQL	solves	this	problem	by
letting	you	specify	the	table	name	of	the	field	you	need	as	well.		We	can	see	how	this
works,	even	with	one	table.

SELECT	Customers.CustomerID,	Customers.CompanyName

FROM	Customers

WHERE	Customers.CustomerID	LIKE	‘A%’

Although	we	don’t	need	to	specify	a	table	when	there	is	only	one,	this	example	does	show
how	a	table	is	specified	(before	the	field	name,	separated	from	it	by	a	“.”).		However,	it
also	shows	that	this	way	of	specifying	tables	is	inconveniently	long	to	type	out,	or	even	to
read	through	easily.		The	query	might	contain	twenty	fields,	in	the	“SELECT”	clause,	five
more	in	the	“WHERE”	clause,	and	take	data	from	five	different	tables.		Such	a	query
quickly	becomes	unreadable	and	tedious	to	type,	even	with	copy	and	paste.		This	makes	it
harder	to	understand,	or	to	re-use	by	changing	its	code.		SQL	solves	this	problem	by
allowing	the	use	of	aliases	on	table	names,	to	shorten	them,	as	below.

SELECT	c.CustomerID,	c.CompanyName

FROM	Customers	c

WHERE	c.CustomerID	LIKE	‘A%’

This	query	returns	any	records	in	the	“Customers”	table	which	have	a	“CustomerID”	field
beginning	with	“A”.		The	“c”	is	the	alias	for	the	customer	table.		The	table	alias	is	made
by	putting	the	alias	name	(“c”)	after	the	real	table	name	(“Customers”)	in	the	“FROM”
clause.		If	you	take	this	part	away,	as	below,	the	query	fails	to	run.

SELECT	*

FROM	Customers

WHERE	c.CustomerID	LIKE	‘A%’

In	queries	using	a	subquery,	join,	or	both,	the	use	of	table	aliases	can	save	time	and	make
it	easier	to	read	through	a	query	you	just	wrote.

INNER	JOIN	-	How	to	combine	related	records	from
different	tables
Inner	joins	return	a	list	of	matching	records.		Typically,	they	are	made	by	joining	two
tables	on	the	unique	ID	field	of	one,	such	as	the	ID	field	of	the	Region	table,	and	a
reference	to	that	field	in	the	other	table.

As	an	example,	run	the	query	below:

SELECT	*

FROM	Region

INNER	JOIN	Territories

ON	Region.RegionID	=	Territories.RegionID

Note	that	the	result	of	this	query	is	fifty-three	rows,	the	same	as	the	number	of	territories.	
Each	territory	has	only	one	region	(the	region	it	is	in)	and	that	is	the	region	that	appears
next	to	it	in	the	results.

We	can	shorten	the	query	by	using	table	aliases,	as	below:

SELECT	*

FROM	Region	r

INNER	JOIN	Territories	t

ON	r.RegionID	=	t.RegionID

So	far,	we	have	used	“*”	to	get	all	of	the	rows	from	both	tables.		This	is	just	for	simplicity,
however.		If	we	want	to	limit	the	number	of	columns	returned,	we	can.		Try	changing	the
“SELECT”	clause	of	the	shortened	query	to	each	of	those	below,	and	then	running	it
again.

SELECT	t.TerritoryDescription,	r.RegionDescription

This	gives	us	the	specified	columns,	one	from	each	table.		Note	that	we	have	also	used	the
aliases	“r”	and	“t”	to	specify	which	tables	to	take	the	columns	from.		We	don’t	always
need	to	do	this,	but	it	is	good	practice.		If	any	of	the	column	names	we	wanted	to	select
appeared	in	both	tables,	and	we	didn’t	use	the	alias,	then	SQL	would	not	know	which	one
to	pick,	and	would	return	an	error	message.

Now	try	running	the	query	below:

SELECT	t.*,	r.RegionDescription

And:

SELECT	t.TerritoryDescription,	r.*

You	will	see	that	the	first	version	above	returns	two	columns,	the	next	returns	all	the
columns	from	Territories	(and	one	from	Region)	and	the	last	returns	all	columns	from
Region	(and	one	from	Territories).

Exercise	–	11.1

(answer)
Return	a	list	of	products	and	their	category	names.		Include	all	columns	from	the	Products
table	and	only	the	category	name	column	from	the	Categories	table.

Exercise	–	11.2

(answer)
Return	a	list	of	orders	and	the	names	of	the	companies	which	placed	them.

Exercise	–	11.3

(answer)
Earlier,	in	the	chapter	on	the	grouping,	there	was	the	exercise	(8.3)	below:

Get	the	number	of	units	on	order	from	each	supplier.		Show	the	supplier	IDs	in	your
results.

Only	the	supplier	ID	was	shown	in	the	results.		Here	is	the	query	that	answers	that
exercise.

SELECT	SupplierID,	Sum(UnitsOnOrder)

FROM	Products

GROUP	BY	SupplierID

Now	that	we	have	covered	joins,	you	know	enough	to	replace	the	supplier	ID	with	the
supplier	name.		Try	it.		If	you	can’t	work	out	how	to	do	this,	then	just	use	the	answer	to
this	exercise	as	an	example,	and	the	next	exercise	will	give	you	another	chance	to	put	this
technique	into	practice.

Exercise	–	11.4

(answer)
Also	in	the	chapter	on	the	grouping,	there	was	the	exercise	(8.5)	below:

Get	the	price	of	the	most	expensive	item	in	each	category.

The	query	was:

SELECT	CategoryID,	Max(UnitPrice)

FROM	Products

GROUP	BY	CategoryID

Can	you	make	it	return	the	results	with	the	category	names,	instead	of	the	IDs?

Other	ways	to	join
You	can	join	tables	in	more	ways	than	the	one	shown	above.		You	can	use	an	“AND”	in
your	“ON”	condition,	to	only	join	tables	with	two	matching	sets	of	fields.		You	can	use	the
multiple	“JOIN	…	ON	…”	clauses,	one	after	the	other,	to	join	multiple	tables	together.	
You	can	join	tables	on	other	conditions	than	a	field	in	one	matching	a	field	in	the	other.

Although	joins	are	usually	made	on	condition	of	a	field	from	each	table	having	an	equal
value	to	the	other,	you	can	join	tables	however	you	like.		You	can	join	records	on	the	basis
that	the	values	are	not	equal,	“<>”,	if	you	want.		However,	you	are	more	likely	to	join	on
something	like	a	date	field,	where	the	dates	are	the	same,	but	the	times	are	not.		For
example,	if	you	look	in	the	Orders	table,	you	will	see	that	the	dates	do	not	include	time
values,	apart	from	“00:00:00.000”	i.e.	midnight.		The	time	the	orders	were	placed	is	in	fact
not	being	recorded.		If	you	were	trying	to	join	this	table	to	a	table	which	had	dates	with	the
times	recorded	too,	you	could	use	an	operator	like	“BETWEEN”,	a	”>=”	condition	joined
by	“AND”	to	a	“<”	condition	to	simulate	between,	or	some	way	of	rounding	the	field	with
the	time	value.		The	“ON”	clause,	like	the	“WHERE”	clause,	is	a	filter.		It	is	a	small	step
from	using	“WHERE”	to	using	“ON”.

Outer	Joins	–	How	to	get	unrelated	records
The	problem	with	inner	joins
Before	covering	outer	joins,	we	need	an	example	to	highlight	the	limitations	of	inner	joins.
	We’ll	take	our	example	from	the	results	of	the	query	below,	so	run	it	before	reading	on.

SELECT	*

FROM	Customers	c

INNER	JOIN	Orders	o

ON	c.CustomerId	=	o.CustomerId

Your	results	table	will	include	a	list	of	all	the	orders	in	the	database,	alongside	the	records
of	the	customers	which	made	them.		Note	that	the	customer	record	part	of	each	row	is
duplicated	down	the	results	table.		Each	customer	may	make	several	orders,	so	one
customer	record	will	be	matched	to	several	order	records,	and	duplicated	for	each	of
them.		Each	order	has	only	one	customer,	however,	so	only	appears	once	in	the	query
result.		You	can	confirm	this	by	checking	the	order	table	contents:	it	will	have	the	same
number	of	rows	as	your	query	result.

All	orders	are	accounted	for:	so	far,	so	good.

Suppose	you	are	now	looking	through	the	list	for	a	particular	customer	and	you	can’t	find
them.			You	know	they	are	in	the	Customers	table.		Has	something	gone	wrong	with	your
query?

In	the	next	exercise,	check	that	all	of	the	customers	are	on	the	list	too.		You’ll	need	a	way
to	get	a	list	of	distinct	customer	names	from	the	result,	so	you	can	compare	it	to	the
records	in	your	customer	table.		Fortunately,	we	already	covered	the	keyword
(“DISTINCT”)	that	lets	you	do	that.

Exercise	–	12.1

(answer)
Get	a	list	of	the	company	names	present	in	your	query	result	(no	duplicates).

What	it	all	means
If	you	compare	the	list	to	your	Customers	table,	even	just	by	the	number	of	rows	in	each,
you	will	see	that	the	list	is	missing	a	couple	of	records.		If	you	were	to	take	the	customer
IDs	of	those	records,	and	search	for	them	in	the	Orders	table,	you	wouldn’t	find	them.	
They	are	not	there.		Those	customers	have	no	orders.

This	is	also	why	they	don’t	appear	in	the	query	result.		The	join	depends	on	customers	and
orders	having	matching	customer	IDs.		If	there	are	no	orders	for	a	particular	customer,	the
customer	record	cannot	match	anything	and	is	never	included	in	the	results	at	all.

In	this	sample	database,	these	kinds	of	situations	are	hard	to	find.		In	the	real	world,	they
are	common.		Here	we	have	two	customers	who	have	never	placed	orders.		Maybe	they
are	new	customers.

Another	common,	real-world	example	of	one	table	having	unmatched	records	in	another
would	be	in	tables	of	sales	or	orders,	and	refund	tables.		If	a	sale	is	refunded	it	would	have
a	matching	record	in	the	refunds	table;	if	not	refunded,	there	would	be	no	refund	and	no
record.		Therefore,	doing	an	inner	join	on	the	two	tables	would	result	in	a	list	of	refunds,
and	their	sales,	but	not	the	un-refunded	sales.

Left	Outer	Joins
Coming	back	to	our	query	in	Northwind,	if	you	need	to	see	the	unmatched	records	too,
you	use	a	different	type	of	join:	an	outer	join,	as	below:

SELECT	*

FROM	Customers	c

LEFT	OUTER	JOIN	Orders	o

ON	c.CustomerId	=	o.CustomerId

You	may	notice	from	the	row	count	that	this	query	gives	you	a	slightly	larger	set	of
results.		It	now	includes	the	two	customer	records	you	were	missing	before.		Let’s	make	it
more	specific.		Add	a	“WHERE”	clause,	as	below,	and	run	it	again.

SELECT	*

FROM	Customers	c

LEFT	OUTER	JOIN	Orders	o

ON	c.CustomerId	=	o.CustomerId

WHERE	o.CustomerId	IS	null

This	time,	you	will	only	see	two	records:	the	unmatched	customer	records,	alongside	the
Orders	table	columns.		The	Orders	columns	will	be	full	of	null	values,	as	there	is	no	order
data	to	put	in	them.

An	outer	join	includes	unmatched	records	in	the	query	result.		A	left	outer	join	includes
unmatched	records	from	the	left	hand	table.		This	will	be	the	one	before	the	“JOIN”
keyword	in	the	query,	i.e.	the	table	name	to	the	left	of	“JOIN”	if	the	query	is	written	all	on
one	line.		In	this	case,	it’s	the	Customers	table.	

Right	Outer	Joins
A	right	outer	join	does	the	reverse	of	the	left	outer	join.		It	includes	unmatched	records
from	the	right	hand	table	i.e.	the	table	specified	after	the	“JOIN”	in	the	query,	in	this	case,
the	Orders	table.		To	see	how	this	works,	edit	your	query	to	make	it	into	the	one	below.	
The	table	names	have	been	swapped,	but	the	join	type	has	been	changed	too,	so	the	query
will	still	return	unmatched	records	from	the	Customers	table.		Run	the	query	now.

SELECT	*

FROM	Orders	o

RIGHT	OUTER	JOIN	Customers	c

ON	c.CustomerId	=	o.CustomerId

WHERE	o.CustomerId	IS	NULL

You	will	see	two	rows,	as	before.		Scroll	to	the	right	of	the	results,	and	you	will	see	the
customer	fields,	to	the	right	of	the	order	fields.		The	results	are	identical,	apart	from	the
table	columns	being	swapped	left	to	right,	and	if	you	really	wanted	the	columns	in	the
original	order,	you	could	specify	that	with	“SELECT	c.*,	o.*”.		Therefore,	you	don’t	need
to	use	right	outer	joins	at	all	if	you	don’t	want	to,	because	a	left	outer	join	can	do	the	all
the	same	things.

Inner	Joins	vs.	Outer	Joins
Let’s	continue	with	left	outer	joins.		Change	the	last	query,	so	that	it	uses	a	left	outer	join
(and	no	“WHERE”	clause)	as	below:

SELECT	*

FROM	Orders	o

LEFT	OUTER	JOIN	Customers	c

ON	c.CustomerId	=	o.CustomerId

Run	the	query.		This	time	the	Orders	table	is	on	the	left	side	of	the	left	join.		The	query
will	return	all	the	orders,	including	orders	without	customers.

Now	add	this	line	to	the	end	of	the	query:

WHERE	c.CustomerId	IS	NULL

This	would	return	only	the	orders	without	customers	matched	to	them.		It	returns	no
results,	so	we	know	there	are	no	such	orders.		There	are	no	orders	without	customers,
which	is	to	be	expected	as	that	should	not	be	possible.

In	this	case,	the	query	(with	or	without	the	“WHERE”	clause)	returns	the	same	results	as	it
would	with	an	inner	join.

Exercise	–	12.2

(answer)
There	is	a	table	called	“EmployeeTerritories”	which	shows	which	territories	are	assigned
to	which	employees.		Write	a	query	that	returns	all	the	territories,	and	the	ID	of	any
employee	assigned	to	them.

Exercise	–	12.3

(answer)
Some	of	the	territories	do	not	have	assigned	employees.		Change	the	query	so	that	it	only
returns	results	for	those	territories.

Exercise	–	12.4

(answer)
Change	the	query	so	that	it	returns	only	results	for	those	territories	that	do	have	employees
assigned.		Make	sure	you	check	the	answer	for	this,	even	if	you	think	your	results	are
correct.

Exercise	–	12.5

(answer)
Change	the	query	so	that	it	shows	the	names	of	those	employees	alongside	the	territory

description.		Remember	that	you	can	join	more	tables	just	by	putting	“…	JOIN	…	ON	…”
statements	one	after	the	other,	in	the	format:

…

FROM	TableX	AS	x

INNER	JOIN	TableY	AS	y

ON	x.FieldA	=	y.FieldA

INNER	JOIN	TableZ	As	z

ON	y.FieldB	=	z.FieldB

…

Full	Outer	Joins
It	is	even	possible	to	return	unmatched	records	from	both	sides	of	the	join	at	once,	by
using	“FULL	OUTER	JOIN”.		It	is	probably	fair	to	say	that	these	are	not	commonly	used.	
Indeed,	some	systems,	like	Microsoft	Access,	don’t	support	full	outer	joins	at	all.

Self-Join	-	How	to	join	a	table	to	itself,	and	why	you	would
want	to
The	Employees	table	is	a	bit	different	from	the	other	tables:	it	references	itself.	
Employees	report	to	other	employees	with	records	in	the	same	table.		If	you	wanted	to,	for
example,	see	a	list	of	employees	next	to	their	managers	names,	you	would	need	to	join	the
table	to	itself.		This	is	called	a	self-join.		Of	course,	a	table	can’t	really	be	in	two	places	at
once,	so	what	we	do	is	join	two	(temporary)	copies,	or	“instances”,	of	the	table.		We	use
“AS”	aliases	to	make	a	staff	copy	and	a	manager	copy.		We	then	join	these	as	we	would
any	normal	pair	of	tables.

To	see	how	it	works,	run	the	following	query:

SELECT	staff.FirstName	+	‘	‘	+	staff.LastName	AS	Staff,

boss.FirstName	+	‘	‘	+	boss.LastName	AS	Boss

FROM	Employees	staff

INNER	JOIN	Employees	boss

ON	staff.ReportsTo	=	boss.EmployeeID

Note	that	only	eight	of	nine	employees	appear	in	the	results.		One	employee	(the	head	of
the	company)	doesn’t	report	to	anyone,	so	isn’t	shown.

Exercise	–	13.1

(answer)
Use	an	outer	join	to	make	that	employee	appear.

Cross	Join	–	getting	all	possible	combinations	of	table	rows
Before	starting	on	this	topic,	I	should	point	out	that	this	type	of	join	is	not	commonly	used,
and	you	won’t	need	to	know	about	it	to	understand	the	later	chapters.		You	could	skip
these	few	pages,	and	just	start	the	next	chapter:	“UNION	/	UNION	ALL”.		However,	cross
joins	are	easy	to	do,	help	show	how	joining	tables	in	SQL	actually	works,	and	do	have
some	practical	value,	so	they	are	included	here	for	anyone	interested.

Introducing	cross	joins
A	cross	join	is	the	simplest	type	of	join.		It	is	the	join	you	make	when	the	rows	in	your
tables	don’t	need	to	reference	each	other.		The	Northwind	database	doesn’t	have	any	such
tables.		However	we	can	still	use	the	tables	it	does	have,	to	demonstrate	how	cross	joins
work,	before	introducing	the	situations	in	which	you	might	want	to	actually	use	them.

Let’s	take	a	look	at	the	tables	to	be	used	in	the	join.		Look	in	the	Region	table	and	note	its
four	rows.		Look	in	the	Territories	table	and	note	that	it	has	fifty-three	rows,	each	with	a
Region	ID	from	one	to	four.		We	can	conclude	that	Northwind	operates	in	four	regions,
which	are	broken	down	into	a	combined	total	of	fifty-three	territories.

How	cross	joins	work
To	see	how	cross	joins	work,	run	this	query:

SELECT	*

FROM	Region,	Territories

This	query	gives	you	a	list	of	two-hundred-and-twelve	rows.		These	rows	contain	all	the
columns	from	both	tables.		If	you	scroll	down,	you	will	see	that	each	of	the	four	Region
IDs	has	a	quarter	of	the	rows,	and	if	you	do	the	math,	you	will	see	that	4	x	53	=	212.

This	query	gave	you	every	possible	combination	of	rows,	each	of	the	fifty-three	regions
for	each	of	the	four	territories.		It	didn’t	check	that	those	regions	were	in	those	territories,
because	we	didn’t	tell	it	to.

Joins	combine	two	sets	of	rows,	and	return	any	combinations	which	meet	one	or	more
conditions.		In	the	inner	join	we	looked	at	earlier,	that	condition	was	that	the	territory	has	a
Region	ID	which	matches	the	region.		In	a	cross	join,	we	want	all	combinations,	so	if	we
were	forced	to	use	a	condition,	we	would	use	one	that	returned	true	for	every	combination
of	rows.		To	show	how	this	is	possible,	we	can	simply	use	a	condition	like	the	one	in	the
“WHERE”	clause	of	the	query	below.

SELECT	*

FROM	Region,	Territories

WHERE	1	=	1

If	you	run	this	query,	you	will	see	the	exact	same	result	as	before.		One	always	equals	one,
so	the	condition	is	always	met.

This	query	gives	the	same	results	as	a	cross	join,	but	there	is	still	one	more	thing	we	need
to	do	to	fully	show	how	cross	joins	work.		We	need	to	use	the	actual	SQL	join	clause	to
write	the	query.		This	is	simple	to	do,	just	replace	the	comma	between	table	names	with
“JOIN”	and	replace	“WHERE”	with	“ON”.

SELECT	*

FROM	Region

JOIN	Territories

ON	1	=	1

Running	this	query	gives	you	the	exact	same	result	as	before,	but	this	time	it	is	very	clear
in	your	query	that	you	are	joining	tables,	and	on	what	condition.		All	other	joins	use
variations	of	the	query	syntax	above,	simply	adding	the	type	of	the	join	before	the	word
“JOIN”,	e.g.	inner,	left	outer,	right	outer,	full	outer.

If	we	wanted	to	make	this	an	inner	join,	we	would	simply	put	“INNER”	before	“JOIN”
and	change	the	filter	in	the	“ON”	clause.		Because	the	“ON”	clause,	like	the	“WHERE”
clause,	is	just	a	filter.

Uses	of	cross	joins
Suppose	you	have	a	list	of	dates	and	a	list	of	time	slots,	each	in	their	own	database	table.	
Maybe	they	are	the	dates	and	times	of	performances	in	a	theatre.		You	want	a	list	of	all
possible	date	and	time	combinations.		You	need	a	cross	join.

Suppose	your	theatre	has	twenty	rows,	from	A	to	T,	and	twenty	seats	in	each,	from	1	to
20.		You	have,	or	can	easily	make,	a	table	with	a	list	of	rows	in,	and	another	with	a	list	of
seat	numbers.		You	can	use	a	cross	join	to	make	all	combinations	of	row	and	seat	number:
A1,	A2	…	B1,	B2	…	etc.		You	then	have	a	list	of	the	seats	available	for	a	performance.

Suppose	you	want	to	combine	your	list	of	seats	with	your	list	of	time	slots	to	generate	a
list	of	tickets	you	can	sell.		Again,	you	need	a	cross	join.

Exercise	–	14.1

(answer)
Use	SQL	to	calculate	how	many	combinations	of	rows	there	would	be	if	the	Shippers	and
Customers	tables	were	cross-joined.

Exercise	–	14.2

(answer)
Actually	join	the	two	tables.

Exercise	–	14.3

(answer)
Use	SQL	to	count	how	many	rows	the	result	has.

UNION	/	UNION	ALL	-	How	to	combine	rows	from	two
tables
UNION	ALL
Some	tables	are	not	related	to	each	other	in	the	sense	that	they	can	be	cross-referenced	by,
for	example,	comparing	fields	containing	ID	numbers.		Joining	them	may	not	make	sense.	
However,	they	may	still	have	things	in	common,	and	you	may	want	to	query	them
together	because	of	this.		For	example,	you	may	want	a	list	of	the	cities,	or	countries,
where	you	have	trading	partners,	i.e.	suppliers	or	customers.		However	these	are	listed	in
two	different	tables.		It	would	be	useful	to	have	a	way	to	add	the	tables’	rows	together.	
There	is	a	way,	as	shown	below:

SELECT	CompanyName

FROM	Suppliers

UNION	ALL

SELECT	CompanyName

FROM	Customers

The	“UNION	ALL”	statement	above	adds	the	results	of	the	Customers	query	onto	the
bottom	of	the	results	of	the	Suppliers	query.		You	now	have	all	the	names	in	one	list.

However,	this	result	doesn’t	show	you	whether	the	companies	are	customers	or	suppliers.	
Try	this	instead:

SELECT	CompanyName,	‘Supplier’	AS	CompanyType

FROM	Suppliers

UNION	ALL

SELECT	CompanyName,	‘Customer’

FROM	Customers

The	string	literals	now	tell	us	which	query,	and	therefore	which	table,	the	rows	came
from.		We	only	need	the	“AS”	part	in	the	top	query,	because	the	column	can	only	have	one
title.

Note	that	for	“UNION”	to	work,	each	field	in	the	top	“SELECT”	clause	must	have	a	field
of	the	same	type	directly	below	it	in	the	lower	“SELECT”	clause.		You	could	not,	for
example,	make	a	union	of	the	supplier	ID	and	the	customer	company	name.		One	is	a
number	and	the	other	text,	so	SQL	would	return	an	error.

Exercise	–	15.1

(answer)
Change	the	query	to	also	include	country	and	city	fields.

UNION
There	is	also	a	“UNION”	keyword.		It	works	like	“UNION	ALL”,	but	it	also	removes
duplicate	rows	(i.e.	rows	where	all	the	values	are	the	same	as	those	of	an	earlier	row	in	the
result)	from	the	combined	set	of	results,	whereas	“UNION	ALL”	doesn’t.

For	example,	the	query	below	uses	“UNION	ALL”

SELECT	Country

FROM	Suppliers

UNION	ALL

SELECT	Country

FROM	Customers

If	you	run	this,	you	will	see	some	countries	appear	several	times.		If	you	delete	the	“ALL”
from	the	query	above	and	run	it	again,	you	will	see	that	the	list	now	contains	distinct
values,	no	duplicates.		Change	the	query	to	the	one	below,	and	run	it.

SELECT	Country,	‘Supplier’

FROM	Suppliers

UNION

SELECT	Country,	‘Customer’

FROM	Customers

Note	that	although	you	now	see	some	countries	appear	twice,	this	is	only	because	their
rows	have	different	values	in	the	second	column,	so	the	rows	as	a	whole	are	not
duplicated,	and	“UNION”	leaves	them	in.

There	are	other	ways	to	combine	two	result	sets,	which	will	be	covered	next,	but
“UNION”	and	“UNION	ALL”	are	probably	the	most	commonly	used.

INTERSECT	–	How	to	get	rows	that	are	only	in	both	tables
Run	the	query:

SELECT	Country

FROM	Customers

INTERSECT

SELECT	Country

FROM	Suppliers

You	will	see	a	list	of	countries.		These	are	the	countries	which	appear	in	both	tables.		As
with	“UNION”,	there	are	no	duplicate	rows	in	the	results;	they	have	been	removed.

Also,	as	with	“UNION”,	when	using	“INTERSECT”	the	number	and	type	of	rows	must
match	up.		The	“EXCEPT”	clause	is	the	same.		We’ll	cover	that	next.

EXCEPT	–	How	to	get	rows	that	are	only	in	one	table
Run	the	query:

SELECT	Country

FROM	Customers

EXCEPT

SELECT	Country

FROM	Suppliers

You	will	see	a	list	of	countries.		These	are	the	countries	where	Northwind	has	customers
but	no	suppliers.		Again,	duplicates	have	been	removed.

This	keyword	has	another	use.		Its	lets	you	compare	two	query	results	and	check	if	they
are	the	same.		If,	during	any	exercise,	you	wrote	a	query	which	differed	from	the	one	in
the	answer,	but	which	you	still	believe	was	correct,	now	is	your	chance	to	test	whether	you
were	right!		First,	make	sure	your	query	has	the	same	columns,	in	the	same	order,	so
“EXCEPT”	doesn’t	give	you	an	error.		After	that,	simply	run	the	following	SQL:

YourQueryHere

EXCEPT

AnswerQueryHere

This	gives	you	the	rows	your	query	returns	(if	any)	which	are	different	from	those	in	the
correct	answer.		Also,	run	this:

AnswerQueryHere

EXCEPT

YourQueryHere

This	gives	you	the	rows	in	the	answer	which	are	missing	from	your	query	(again,	if	there
are	any).

If	there	are	no	results	in	each	case,	then	your	query	result	is	identical	to	the	answer	query
result,	and	therefore	your	query	is	correct	(or	at	least,	it	is	good	enough	that	it	doesn’t
produce	any	errors	using	the	data	provided	in	Northwind),	so,	well	done!

	

Sys	/	Metadata	-	How	to	get	information	about	your
database
The	Northwind	database	is	a	small	database.		It	has	a	small	number	of	tables,	and	those
have	small	numbers	of	rows	and	columns.		It	is	simple.		The	table	and	field	names	are
self-explanatory	and	predictable.		Databases	are	rarely	this	simple	in	the	real	world.

You	may	find	yourself	querying	a	system	containing	hundreds	of	tables.		If	you	want	to
find	a	table,	and	only	have	a	rough	idea	of	what	its	name	is,	or	should	be,	you	may	have	to
scan	a	list	of	hundreds	of	names.		In	this	situation,	knowing	just	a	little	about	how	to	query
the	system,	or	metadata,	of	a	database,	can	be	a	huge	time-saver.		Try	out	the	following
query:

SELECT	Name

FROM	Sys.Tables

WHERE	Name	LIKE	‘%Demo%’

This	returns	a	list	of	tables	containing	the	string	“Demo”	in	the	name.		If	you	right-click
on	the	names,	you	can	copy	them	for	use	in	new	queries,	e.g.	you	could	select	the	top	ten
rows	of	a	view	named	in	the	results	of	the	query	above.

Learning	from	existing	views
Databases	may	also	have	many,	maybe	hundreds,	of	stored	queries,	known	as	“views”,
already	made.		If	many	people	run	queries	from	your	database,	one	of	them	may	already
have	made	queries	you	could	use	that	you	don’t	know	about	yet.

The	views	are	listed	below	tables	in	the	object	explorer	(in	the	left	hand	panel).		If	you
want	to	see	the	queries	they	contain,	right-click	on	them	and	choose	the	options	“Script
View	as”	then	“CREATE	to”.		This	will	show	you	the	SQL	the	view	uses.		There	will	be
some	extra	lines	of	SQL	at	the	top,	to	do	with	saving	the	query	as	a	view,	but	further	down
you	will	see	the	familiar	SQL	for	getting	data.		If	you	want	to	see	some	results	for	a	view,
you	can	use	the	“Select	Top	1000	Rows”	menu	option	on	views	too.

Northwind	doesn’t	have	hundreds	of	views,	but	we	can	still	use	it	to	show	how	to	search
large	numbers	of	views	efficiently,	as	in	the	exercise	below.

Exercise	–	18.1

(answer)
Can	you	change	the	query	above	to	display	a	list	of	views	containing	the	word	“Product”?	
Hint:	take	the	query	above	and	change	the	words	“Tables”	and	“Demo”.

Subqueries	-	How	to	make	one	query	use	a	result	from
another
Subqueries	in	the	FROM	clause
This	first	use	of	a	subquery	is	one	of	the	simplest	to	grasp.		Suppose	you	have	just	run	a
query	and	would	now	like	to	perform	a	further	query	on	the	results	table	it	gave	you.	
Maybe	the	first	query	is	very	long	and	complex,	full	of	joins	and	calculations.		Maybe	it
was	written	by	someone	else	and	you	don’t	want	to	edit	it.		You	just	want	to	pull	out	the
data	you	need	from	the	results	table.		One	way	to	do	this	would	be	to	create	a	view
(effectively	a	saved	query)	in	the	database.		Like	the	views	in	the	last	chapter,	this	would
have	a	name,	and	you	could	refer	to	that	name	the	same	way	you	refer	to	a	table	name:	in
the	“FROM”	clause	of	any	other	query.		Another	way,	which	saves	you	from	having	to
create	a	view,	is	to	query	your	query	result	directly.

We	don’t	actually	need	to	make	a	long	complex	query	like	the	one	imagined	above.		We
can	see	the	principle	easily	in	a	much	smaller	example.		Run	the	code	below	as	you	first
query.

SELECT	ProductName,	UnitsInStock	*	UnitPrice	AS	StockValue

FROM	Products

Now	suppose	you	want	to	list	only	those	products	with	a	stock	value	in	the	thousands.	
The	following	query	lets	you	do	so	very	simply,	by	adding	a	couple	of	lines	to	each	end	of
the	original.

SELECT	*

FROM	(

SELECT	ProductName,	UnitsInStock	*	UnitPrice	AS	StockValue

FROM	Products

)	sq

WHERE	sq.StockValue	>=	1000

Note	that	the	brackets	around	the	original,	or	“inner”,	query	mean	that	it	will	be	completed
first.		Its	results	will	be	used	in	the	outer	query,	just	like	a	table	would	be.		In	this	example,
we	have	the	outer	query	give	the	inner	query’s	result	the	alias	“sq”,	for	“subquery”,	so	that
we	can	refer	to	it.		The	outer	query	takes	only	the	rows	from	the	results	table	which	meet
the	condition	in	the	“WHERE”	clause,	and	it	does	so	using	the	“StockValue”	field,	which
the	subquery	generated.

This	saves	some	thinking	compared	to	modifying	the	original	query.		To	filter	it	the	same
way,	we	would	have	needed	to	add	the	following	clause	to	the	original	query:

WHERE	UnitsInStock	*	UnitPrice	>=	1000

With	the	subquery	approach,	on	the	other	hand,	you	can	run	the	first	query	without

reading	its	code	and	design	your	outer	query	simply	by	looking	at	the	results	table	and
deciding	which	bits	you	need.

Exercise	–	19.1

(answer)
Without	changing	its	subquery,	can	you	make	the	query	above	return	the	combined	stock
value	of	all	the	products	you	stock?

Exercise	–	19.2

(answer)
Another	use	for	subqueries	in	the	FROM	clause	is	to	perform	grouping	or	sorting	on	the
results	of	a	union.		Use	the	SQL	below	as	a	subquery.		Have	your	main	query	return	a	list
of	countries	and	cities,	making	sure	any	rows	with	the	same	country	or	city	stay	together.

SELECT	CompanyName,	‘Supplier’	AS	CompanyType,	City,	Country

FROM	Suppliers

UNION	ALL

SELECT	CompanyName,	‘Customer’,	City,	Country

FROM	Customers

The	IN	operator
The	“IN”	operator	is	commonly	used	in	subqueries,	particularly	subqueries	inside
“WHERE”	clauses,	but	you	don’t	need	a	subquery	to	use	“IN”.		You	can	see	its	effect
clearly	by	running	the	example	below:

SELECT	SupplierID,	CompanyName,	Country

FROM	Suppliers

WHERE	Country	IN	(‘UK’,	‘USA’)

Using	“IN”	let’s	you	check	if	one	value	(e.g.	the	value	in	a	record’s	“Country”	field)
matches	any	of	a	list	of	values.

To	see	a	list	of	suppliers	from	other	countries,	run	this	query:

SELECT	SupplierID,	CompanyName,	Country

FROM	Suppliers

WHERE	Country	NOT	IN	(‘UK’,	‘USA’)

The	“NOT”	makes	the	query	check	for	countries	which	are	not	on	the	list.

Subqueries	in	the	WHERE	clause	–	using	the	IN	operator
Suppose	you	need	a	list	of	all	the	products	supplied	from	a	particular	country.		The
Products	table	doesn’t	say	which	country	supplies	a	product.		What	it	does	say	is	the
Supplier	ID,	which	lets	you	find	the	record	in	the	supplier	table	and	from	that,	the
supplier’s,	and	therefore	the	product’s	country.

Still,	you	suspect	that	you	will	have	to	produce	similar	lists	in	future,	for	other	countries.	
You	want	a	query	that	you	can	re-use	to	get	those	results,	just	by	changing	the	country
name	in	your	“WHERE”	clause.		The	subquery	below	is	one	way	to	do	this.

SELECT	ProductName

FROM	Products

WHERE	SupplierID	IN

(

SELECT	SupplierID

FROM	Suppliers

WHERE	Country	=	‘UK’

)

This	should	return	a	list	of	British	sounding	foods,	and	some	more	exotic	sounding
liquids,	presumably	imports	to	the	UK	which	the	supplier	then	ships	on.		If	you	change
“UK”	to	another	country	name,	you	can	get	a	similar	list	for	a	different	country

The	subquery	returns	a	list	of	UK	supplier	IDs,	and	the	main	query,	which	returns	the
results	you	actually	see,	gives	you	all	the	products	with	a	supplier	ID	on	that	list.

Note	the	use	of	“IN”	above.		This	tells	the	“WHERE”	clause	to	check	if	any	of	the	values
in	the	subquery	match	the	product’s	supplier	ID.		If	we	had	used	the	“=”	operator,	then	we
would	be	limited	to	subqueries	which	always	return	a	single	value,	i.e.	a	single	Supplier
ID	cannot	be	equal	to	a	list	of	Supplier	IDs,	and	this	situation	would	cause	the	query	to
return	an	error	anyway.		Using	“IN”	lets	us	match	a	list	against	a	single	value.

Exercise	–	19.3

(answer)
Return	a	list	of	products	supplied	from	the	UK	or	USA.

Exercise	–	19.4

(answer)
Make	a	query	which	returns	a	list	of	products	in	the	seafood	category.

Exercise	–	19.5

(answer)

Make	a	query	which	returns	a	list	of	products	from	only	the	categories	which	you	are
confident	will	be	suitable	for	vegetarians.		Assume	these	particular	vegetarians	don’t
eat	fish.

Subqueries	in	the	WHERE	clause	–	the	ALL	operator
Like	“IN”,	the	“ALL”	operator	allows	you	to	compare	a	list	of	values	to	a	single	value.	
However,	it	allows	you	to	use	operators	like	“>”	to	do	so.		The	example	below	shows	how.

SELECT	*

FROM	Products

WHERE	UnitPrice	>=	ALL

(

SELECT	UnitPrice

FROM	Products

)

The	subquery	returns	a	list	of	unit	prices.		The	main	query	returns	a	list	of	products	with	a
unit	price	equal	to	or	greater	than	each	value	on	the	list	i.e.	equal	to	the	highest	value	on
the	list.		This	gives	you	the	record	for	the	most	expensive	product.

At	this	point,	you	might	think	that	you	could	just	use	an	aggregate	function	without	a
subquery,	and	get	the	maximum	unit	price.		You	could,	but	you	couldn’t	get	the	rest	of	the
product	record	that	way	(try	it	and	see).		You	could	use	an	aggregate	function	inside	the
“WHERE”	clause,	as	below:

WHERE	UnitPrice	=

(

SELECT	Max(UnitPrice)

FROM	Products

)

However,	this	is	no	simpler:	you	still	have	to	use	a	subquery.

Exercise	–	19.6

(answer)
In	the	chapter	on	grouping	and	aggregate	functions,	we	mentioned	this	exact	problem:	that
you	can	get	an	aggregate	value,	such	as	a	minimum	or	maximum,	but	not	the	record(s)
associated	with	it	(in	that	case,	the	record	for	the	cheapest	product).		The	queries	above
show	how	to	solve	this.		Can	you	alter	the	“ALL”	query	to	return	the	record	for	the
cheapest	product?

Subqueries	in	the	WHERE	clause	-	the	“ANY”	operator
This	is	written	into	the	query	the	same	way	as	“ALL”,	except	that	it	returns	true	if	even
one	of	the	values	in	a	list	meets	the	specified	condition.		Run	the	query	below	to	see.

SELECT	*

FROM	Products

WHERE	UnitPrice	<	ANY

(

SELECT	UnitPrice

FROM	Products

)

This	query	returns	all	the	rows	of	the	table,	apart	from	the	one	for	the	most	expensive
product.		The	most	expensive	product	doesn’t	have	a	unit	price	cheaper	than	any	of	the
other	products,	so	it	never	meets	the	condition.

Where	to	go	from	here
There	is	a	lot	more	to	SQL.		You	can	use	it	to	change	the	data	in	a	database.		You	can	use
it	to	make	your	own	tables	and	functions	or	to	modify	other	people’s.		It	is	not	just	a	way
of	getting	data,	but	the	actual	language	used	for	controlling	how	databases	work.

Most	people	will	use	SQL	only	to	get	data	for	reports	or	analysis.		If	that	describes	you,
and	you	often	find	yourself	exporting,	or	just	copy-and-pasting,	the	results	of	your	SQL
queries	into	Excel	for	further	work,	you	may	wish	to	move	on	to	a	similar	course	I	wrote
called	Excel:	Learn	Formulas	Fast.		It’s	a	concise,	exercise-packed	tour	of	what	Excel	can
do	with	data,	which	is	much	more	than	just	calculations.		It’s	available	in	e-book	format.

Other	people	will	go	on	to	do	database	administration	and	development.		This	may	involve
importing	new	records,	correcting	faulty	records	in	bulk,	changing	the	database	structure
itself,	and,	of	course,	designing	new	queries	for	all	the	reports	that	users	need.		If	that’s
something	you’d	be	interested	in,	that	can	also	all	be	practised	using	the	SQL	Server	and
the	Northwind	database.

If	you	are	interested	in	database	design,	rather	than	just	working	with	data	inside
databases,	this	is	a	separate	topic	to	SQL.		You	can	use	SSMS	to	create	a	SQL	Server
database,	but	it’s	worth	reading	up	on	database	design	topics	like	normalisation	first.		If
you	want	to	give	a	SQL	Server	database	a	user	interface,	e.g.	data-entry	forms,	you	will
need	to	use	separate	software	to	design	one.		For	example,	Microsoft	Visual	Studio	allows
you	to	design	websites,	so	you	could	use	that	to	make	one	that	accesses	your	database.		If
you	want	to	go	down	the	non-Microsoft	route	for	your	website,	you	could	use	PHP	and
MySQL	instead,	which	are	also	free	to	download	online.

If	you’re	not	into	web	design,	and	just	want	to	get	started	experimenting	with	databases,
you	could	use	Microsoft	Access.		It’s	limited,	compared	to	the	options	above,	but	a	lot	of
computers	have	it	already	installed,	and	it	lets	you	design	forms	and	reports	without
having	to	use	other	software	or	learning	about	web	design	or	programming,	so	it	may	give
you	a	quick	way	to	try	some	things	out.

Author’s	note
I	hope	you	found	this	book	useful.		If	so,	you	may	wish	to	try	some	of	my	other	books,
listed	over	the	page.

I	also	hope	that	this	book	saved	you	time,	that	it	provided	clear,	concise	information,	and	a
simple	way	to	practise	using	it.		That’s	the	standard	I	aim	for:	to	write	the	kind	of	book
that	I	would	want	to	use.

At	this	point,	I	would	normally	ask	nicely	for	a	review	on	the	book’s	Amazon	page.	
However,	from	leaving	reviews	myself,	I	know	it	can	be	hard	to	think	what	to	write,	so
I’m	trying	out	ways	to	make	it	easier.		Instead,	I’m	asking,	if	you	can	spare	a	couple	of
minutes,	please,	go	to	this	book’s	Amazon	page,	click	“leave	a	review”,	and	type	in	any
one	of	the	reviews	below	that	you	agree	with:

This	book	did	everything	it	said	it	would.

This	book	was	clear	and	to	the	point.

I	found	the	practice	exercises	helpful.

I	did	learn	SQL	fast!

I	like	the	way	this	book	is	written.

This	book	was	well	formatted	for	Kindle.

I	do	appreciate	honest	reviews.		Leaving	a	good	review	helps	my	books	do	well	and
encourages	me	to	write	more	of	them.		One	of	those	books	may	then	be	there	to	save	you
time	when	you	next	need	to	learn	a	new	skill	in	a	hurry.		That’s	what	I	can	offer,	honestly,
in	return	for	the	support	of	a	good	review.

Finally,	if	you	feel	that	anything	about	this	book	falls	short	of	what	you	hoped	for,	you	can
let	me	know	at:

authordarmstong@gmail.com

To	skip	over	the	answer	section,	and	see	other	books	I	have	written,	follow
the	link	below:

Other	books	you	may	find	useful

Answers
Answer	–	1.1

(back)
SELECT	*

FROM	Categories

Answer	–	1.2

(back)
SELECT	ProductName,	UnitPrice,	UnitsInStock

FROM	Products

Answer	–	2.1

(back)
SELECT	ProductName	AS	Product,	UnitPrice,	UnitsInStock,	UnitPrice	*	UnitsInStock
AS	StockValue

FROM	Products

Answer	–	2.2

(back)
SELECT	ProductName,	UnitPrice	*	UnitsOnOrder

FROM	Products

Answer	–	2.3

(back)
SELECT	ProductName,	UnitsInStock	+	UnitsOnOrder

FROM	Products

Answer	–	2.4

(back)
SELECT	UnitPrice	/	5

FROM	Products

Answer	–	2.5

(back)
SELECT	7	*	8

Answer	–	2.6

(back)
SELECT	ProductName,	UnitsInStock	%12

FROM	Products

Answer	–	2.7

(back)
SELECT	ProductName,	(UnitsInStock	+	UnitsOnOrder)	*	UnitPrice

FROM	Products

Answer	–	2.8

(back)
SELECT	ContactName	+	‘,	‘	+	Address	+	‘,	‘	+	City

FROM	Customers

Answer	–	2.9

(back)
SELECT	ContactName	+	‘,	‘	+	Address	+	‘,	‘	+	City	AS	‘Name	and	Address’

FROM	Customers

Answer	–	2.10

(back)
SELECT	OrderID,	ShipCity	+	‘,	‘	+	IsNull(ShipRegion,”)	+	‘,	‘	+	ShipCountry	AS	‘Order
Address’

FROM	Orders

Answer	–	2.11

(back)
SELECT	OrderID,	ShipCity	+	‘,	‘	+	IsNull(ShipRegion	+	‘,	‘,”)	+	ShipCountry	AS	‘Order
Address’

FROM	Orders

This	answer	does	become	a	little	hard	to	read	within	the	brackets	of	the	IsNull	function.	
However,	all	we	have	done	is	to	move	the	“comma	plus	space”	into	the	first	argument	of
the	function	onto	the	end	of	the	ShipRegion	field.		If	this	field	is	null,	then	adding	the
string	constant	won’t	affect	it:	it	will	still	be	null.		So	this	time,	the	second	“comma	plus
space”	will	only	added	to	the	address	if	the	ShipRegion	is	not	null.

Answer	–	2.12

(back)
SELECT	OrderID,	ShipCity	+	‘,	‘	+	ShipRegion	+	‘,	‘	+	ShipCountry	AS	‘Order	Address’

FROM	Orders

This	query	now	returns	null	values	for	order	address	whenever	the	region	is	null.

Answer	–	3.1

(back)
SELECT	*

FROM	Customers

WHERE	City	=	‘Berlin’

Answer	–	3.2

(back)
SELECT	ContactName,	Phone

FROM	Customers

WHERE	City	=	‘Berlin’

Answer	–	3.3

(back)
SELECT	City

FROM	Suppliers

WHERE	Country	=	‘Japan’

Answer	–	3.4

(back)
SELECT	City

FROM	Suppliers

WHERE	Country	=	‘India’

This	query	returns	no	rows.		This	is	the	correct	result.		You	don’t	have	any	suppliers	based
in	India,	so	the	WHERE	clause	removes	all	the	rows.

The	opposite	case	here	is	that,	if	you	had	several	suppliers	based	in	the	same	city	in	India,
that	city’s	name	would	appear	several	times	in	your	results.		The	table	records	are	one	per
supplier,	not	one	per	city,	so	this	query	can	return	duplicate	rows.		We’ll	cover	how	to
prevent	such	duplication	in	the	chapter	on	the	“DISTINCT”	keyword,	later	on.

Answer	–	3.5

(back)
SELECT	ProductName,	UnitsInStock

FROM	Products

WHERE	UnitsInStock	>=	10

Answer	–	3.6

(back)
SELECT	ProductName,	UnitPrice

FROM	Products

WHERE	UnitPrice	>	21.35

Answer	–	3.7

(back)
SELECT	*

FROM	Products

WHERE	UnitsInStock	*	UnitsOnOrder	<	100

Answer	–	3.8

(back)
SELECT	ProductName

FROM	Products

WHERE	ProductName	LIKE	‘P%’

Answer	–	3.9

(back)
SELECT	*

FROM	Employees

WHERE	HireDate	>=	‘1993-01-01’

Answer	–	4.1

(back)
SELECT	ProductName,	UnitsInStock

FROM	Products

WHERE	UnitsInStock	>=	10

AND	UnitsInStock	<	20

Answer	–	4.2

(back)
SELECT	*

FROM	Orders

WHERE	OrderDate	>=	‘1997-01-01’

AND	ShipCountry	=	‘Brazil’

Answer	–	4.3

(back)
SELECT	*

FROM	Orders

WHERE	OrderDate	>=	‘1997-01-01’

AND	OrderDate	<	‘1998-01-01’

AND	ShipCountry	=	‘Brazil’

Answer	–	4.4

(back)
SELECT	*

FROM	Employees

WHERE	Country	=	‘UK’

OR	City	=	‘Seattle’

Answer	–	4.5

(back)
SELECT	*

FROM	Customers

WHERE	Country	<>	‘USA’

Answer	–	4.6

(back)
SELECT	*

FROM	Customers

WHERE	ContactTitle	LIKE	‘Sales%’

OR	ContactTitle	LIKE	‘Marketing%’

Answer	–	4.7

(back)
SELECT	ContactName,	Phone,	ContactTitle,	Country

FROM	Customers

WHERE	Country	<>	‘USA’

AND	(ContactTitle	LIKE	‘Sales%’

OR	ContactTitle	LIKE	‘Marketing%’)

Answer	–	4.8

(back)
SELECT	ContactName,	Phone,	ContactTitle,	Country

FROM	Customers

WHERE	Country	<>	‘USA’

AND	NOT	(ContactTitle	LIKE	‘Sales%’

OR	ContactTitle	LIKE	‘Marketing%’)

Answer	–	4.9

(back)
SELECT	ContactName,	Phone,	ContactTitle,	Country

FROM	Customers

WHERE	(Country	<>	‘USA’

AND	Country	<>	‘Mexico’)

AND	NOT	(ContactTitle	LIKE	‘Sales%’

OR	ContactTitle	LIKE	‘Marketing%’)

There	are	several	queries	you	could	use	to	get	this	data.		The	one	below	avoids	using
brackets.

SELECT	ContactName,	Phone,	ContactTitle,	Country

FROM	Customers

WHERE	Country	<>	‘USA’

AND	Country	<>	‘Mexico’

AND	ContactTitle	NOT	LIKE	‘Sales%’

AND	ContactTitle	NOT	LIKE	‘Marketing%’

Answer	–	5.1

(back)
SELECT	DISTINCT	Country

FROM	Suppliers

Answer	–	6.1

(back)
SELECT	ProductName,	CategoryID,	UnitPrice

FROM	Products

ORDER	BY	CategoryID,	UnitPrice

As	ascending	order	is	the	default,	there	is	no	need	to	use	any	keywords	with	UnitPrice	or
(CategoryID).		There	is	an	“ASC”	keyword	in	SQL,	the	opposite	of	“DESC”,	but	we	don’t
need	it.

Answer	–	7.1

(back)
SELECT	TOP	10	ProductName,	UnitPrice

FROM	Products

ORDER	BY	UnitPrice

Answer	–	8.1

(back)
SELECT	Sum(UnitsInStock)

FROM	Products

WHERE	Discontinued	=	1

Answer	–	8.2

(back)
SELECT	Sum(UnitsInStock)

FROM	Products

WHERE	CategoryID	=	1

Answer	–	8.3

(back)
SELECT	SupplierID,	Sum(UnitsOnOrder)

FROM	Products

GROUP	BY	SupplierID

Answer	–	8.4

(back)
SELECT	SupplierID,	Sum(UnitsOnOrder	*	UnitPrice)

FROM	Products

GROUP	BY	SupplierID

Answer	–	8.5

(back)
SELECT	CategoryID,	Max(UnitPrice)

FROM	Products

GROUP	BY	CategoryID

Hopefully,	if	you	didn’t	notice	it	already,	this	exercise	made	you	notice	the	need	to	change
the	grouping	field	in	two	places:	the	SELECT	and	GROUP	BY	clauses.		Typically,	when
grouping	is	used,	the	non-aggregate	fields	in	these	clauses	should	match.

Answer	–	8.6

(back)
SELECT	SupplierID,	Min(UnitPrice)

FROM	Products

GROUP	BY	SupplierID

Answer	–	9.1

(back)
SELECT	CategoryID,	Sum(UnitsInStock)

FROM	Products

GROUP	BY	CategoryID

HAVING	Sum(UnitsInStock)	>	100

Answer	–	9.2

(back)
SELECT	SupplierID,	Count(*)

FROM	Products

GROUP	BY	SupplierID

HAVING	Count(*)	=	1

Answer	–	9.3

(back)
SELECT	CategoryID,	Sum(UnitsOnOrder)

FROM	Products

GROUP	BY	CategoryID

HAVING	Sum(UnitsOnOrder)	=	0

Answer	–	9.4

(back)
SELECT	OrderID,	Sum(Quantity)

FROM	[Order	Details]

GROUP	BY	OrderID

HAVING	Sum(Quantity)	<	50

Answer	–	9.5

(back)
SELECT	OrderID,	Max(Discount)

FROM	[Order	Details]

GROUP	BY	OrderID

HAVING	Max(Discount)	>	0.2

Answer	–	9.6

(back)
SELECT	OrderID,	Sum(Quantity	*	UnitPrice)	As	CashValue,	Sum(Quantity)	As	Units

FROM	[Order	Details]

GROUP	BY	OrderID

Answer	–	11.1

(back)
SELECT	c.CategoryName,	p.*

FROM	Products	p

INNER	JOIN	Categories	c

ON	p.CategoryID	=	c.CategoryID

Answer	–	11.2

(back)
SELECT	c.CompanyName

FROM	Orders	o

INNER	JOIN	Customers	c

ON	o.CustomerID	=	c.CustomerID

Answer	–	11.3

(back)
SELECT	s.CompanyName,	Sum(p.UnitsOnOrder)

FROM	Products	p

INNER	JOIN	Suppliers	s

ON	p.SupplierID	=	s.SupplierID

GROUP	BY	s.	CompanyName

Answer	–	11.4

(back)
SELECT	c.CategoryName,	Max(p.UnitPrice)

FROM	Products	p

INNER	JOIN	Categories	c

ON	p.CategoryID	=	c.CategoryID

GROUP	BY	CategoryName

Answer	–	12.1

(back)
SELECT	DISTINCT	CompanyName

FROM	Customers	c

INNER	JOIN	Orders	o

ON	c.CustomerId	=	o.CustomerId

Answer	–	12.2

(back)
SELECT	*

FROM	Territories	t

LEFT	JOIN	EmployeeTerritories	e

ON	t.TerritoryID	=	e.TerritoryID

Answer	–	12.3

(back)
SELECT	*

FROM	Territories	t

LEFT	JOIN	EmployeeTerritories	e

ON	t.TerritoryID	=	e.TerritoryID

WHERE	e.EmployeeID	Is	Null

Answer	–	12.4

(back)
SELECT	*

FROM	Territories	t

INNER	JOIN	EmployeeTerritories	e

ON	e.TerritoryID	=	t.TerritoryID

Yes,	you	could	keep	using	the	query	from	the	last	exercise,	with	its	left	outer	join,	and	just
change	the	condition	in	the	“WHERE”	clause,	but	this	would	be	inefficient.		If	you
queried	a	large	table	this	way,	it	would	slow	your	query.		This	doesn’t	matter	here,	but
speed	is	an	issue	in	bigger	databases.

Answer	–	12.5

(back)
SELECT	FirstName,	LastName,	TerritoryDescription

FROM	Employees	e

INNER	JOIN	EmployeeTerritories	et

ON	e.EmployeeID	=	et.EmployeeID

INNER	JOIN	Territories	t

ON	et.TerritoryID	=	t.TerritoryID

This	should	give	you	the	same	number	of	results	as	before	(49).		You	may	have	done	the
join	in	a	different	order,	but	this	doesn’t	matter	for	inner	joins.

Answer	–	13.1

(back)
SELECT	staff.FirstName	+	‘	‘	+	staff.LastName	AS	Staff,

boss.FirstName	+	‘	‘	+	boss.LastName	As	Boss

FROM	Employees	staff

LEFT	OUTER	JOIN	Employees	boss

ON	staff.ReportsTo	=	boss.EmployeeID

Answer	–	14.1

(back)
SELECT	(

SELECT	Count(*)

FROM	Shippers

)	*	(

SELECT	Count(*)

FROM	Customers

)

Answer	–	14.2

(back)
The	quick	way:

SELECT	*

FROM	Shippers,	Customers

The	“join”	way:

SELECT	*

FROM	Shippers

INNER	JOIN	Customers

ON	1	=	1

Answer	–	14.3

(back)
The	quick	way:

SELECT	Count(*)

FROM	Shippers,	Customers

The	“join”	way:

SELECT	Count(*)

FROM	Shippers

INNER	JOIN	Customers

ON	1	=	1

Answer	–	15.1

(back)
SELECT	CompanyName,	‘Supplier’	AS	CompanyType,	City,	Country

FROM	Suppliers

UNION	ALL

SELECT	CompanyName,	‘Customer’,	City,	Country

FROM	Customers

Answer	–	18.1

(back)
SELECT	Name

FROM	Sys.Views

WHERE	Name	LIKE	‘%Product%’

Answer	–	19.1

(back)
SELECT	Sum(StockValue)

FROM	(

SELECT	ProductName,	UnitsInStock	*	UnitPrice	AS	StockValue

FROM	Products

)	sq

Answer	–	19.2

(back)
SELECT	*

FROM

(

SELECT	CompanyName,	‘Supplier’	AS	CompanyType,	City,	Country

FROM	Suppliers

UNION	ALL

SELECT	CompanyName,	‘Customer’,	City,	Country

FROM	Customers

)	sq

ORDER	BY	sq.Country,	sq.City

Answer	–	19.3

(back)
SELECT	*

FROM	Products

WHERE	SupplierID	IN

(

SELECT	SupplierID

FROM	Suppliers

WHERE	Country	IN	(‘UK’,	‘USA’)

)

Answer	–	19.4

(back)
SELECT	*

FROM	Products

WHERE	CategoryID	IN

(

SELECT	CategoryID

FROM	Categories

WHERE	CategoryName	=	‘Seafood’

)

In	this	case,	you	could	also	use	“=”	instead	of	“IN”,	as	there	is	only	one	seafood	category,
and	therefore	only	one	ID	returned	by	the	subquery.

Answer	–	19.5

(back)
SELECT	*

FROM	Products

WHERE	CategoryID	IN

(

SELECT	CategoryID

FROM	Categories

WHERE	CategoryName	NOT	IN	(‘Seafood’,	‘Meat/Poultry’)

)

Answer	–	19.6

(back)
SELECT	*

FROM	Products

WHERE	UnitPrice	<=	ALL

(

SELECT	UnitPrice

FROM	Products

)

Other	books	you	may	find	useful
I	have	written	similar	Learn…Fast	courses	for:

Command	Line	and	Batch	Script	(for	Windows)

Excel	VBA	(function	design)

Excel	(formulas)

I	have	also	written	brief	guides	to:

Keyboard	shortcuts

IT	Support

All	of	the	above	are	available	as	e-books.

	Answers
	Table of Contents
	Copyright
	Disclaimer
	Introduction – SQL - Why you should learn it
	SQL is widely used
	SQL can do many things
	SQL skills are transferable
	Learning SQL is simple
	Microsoft SSMS – How to get free SQL software
	The big picture
	What to download
	Where to download it from
	Choosing between 32-bit and 64-bit
	Completing the download
	Installing
	Northwind – How to get a free database to practice on
	The big picture
	Download your database
	Install your database
	Connect to your database in SMSS
	Tables – What's in a database
	Introduction
	Finding tables
	Looking at tables
	What tables are
	Rows
	Columns
	Relationships
	Technical terms
	The next step
	SELECT – How to query (get data from) a database table
	Making New Queries
	The Query
	The explanation
	Linked answers
	How to get specific columns
	A note on how this book formats queries
	SELECT - How to do calculations within rows
	Introduction
	An example
	Keeping things organised
	A note on units of currency
	More math - operators
	Constants
	SELECT without FROM
	Modulus
	Brackets
	Text Strings
	String literals
	String literals with AS
	Functions
	Null
	The IsNull Function
	Other functions
	The next step
	WHERE - How to get the rows you want
	Matching values
	Comments
	Case
	Clauses
	Matching Values Inexactly
	Matching on calculations
	Matching text values inexactly with LIKE
	Colour-coding
	Date values and literals
	Dates and times
	AND / OR / NOT – How to get the rows you want more precisely
	AND - Ranges
	AND - Multiple conditions
	OR – Being flexible
	Brackets
	NOT – Saying what you don't want
	DISTINCT - How to remove duplicates
	ORDER BY - How to sort your rows
	TOP - How to take a small sample of rows
	Bottom
	GROUP BY - How to summarise row data
	Sum
	Aggregate functions
	Other Aggregate Functions
	Grouping
	Grouping by multiple fields
	HAVING - How to get the rows you want, after summarising
	Applying this to other tables
	Multiple aggregate functions
	Alias - How to query with less typing
	Column Alias
	Table Alias
	INNER JOIN - How to combine related records from different tables
	Other ways to join
	Outer Joins – How to get unrelated records
	The problem with inner joins
	What it all means
	Left Outer Joins
	Right Outer Joins
	Inner Joins vs. Outer Joins
	Full Outer Joins
	Self-Join - How to join a table to itself, and why you would want to
	Cross Join – getting all possible combinations of table rows
	Introducing cross joins
	How cross joins work
	Uses of cross joins
	UNION / UNION ALL - How to combine rows from two tables
	UNION ALL
	UNION
	INTERSECT – How to get rows that are only in both tables
	EXCEPT – How to get rows that are only in one table
	Sys / Metadata - How to get information about your database
	Learning from existing views
	Subqueries - How to make one query use a result from another
	Subqueries in the FROM clause
	The IN operator
	Subqueries in the WHERE clause – using the IN operator
	Subqueries in the WHERE clause – the ALL operator
	Subqueries in the WHERE clause - the "ANY" operator
	Where to go from here
	Author's note
	Other books you may find useful
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(answer)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)
	(back)

